A dynamic black hole corona in an active galaxy through X-ray reverberation mapping

Abstract

X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The relativistic transfer function model used to fit the time-lag spectra.
Fig. 2: The observed 2–10 keV luminosity of the intrinsic component versus the source height.
Fig. 3: The posterior distribution for black hole mass from the best-fitting model.

Data availability

The data that support the plots in Fig. 2 and Extended Data Figs. 1 and 4 are included as source data in the Supplementary Information. All other data used in figures within this paper and other findings of this study are available from the corresponding author upon request. All data used in this work is publicly available. The XMM-Newton observations can be accessed from the XMM-Newton science archive (http://nxsa.esac.esa.int/nxsa-web/).

Code availability

All the code used for the data reduction is available from their respective websites. XSPEC is freely available online. The transfer function model KYNREVERB is available at https://projects.asu.cas.cz/stronggravity/kynreverb. The MCMC sampler EMCEE is available at http://emcee.readthedocs.io/en/stable/index.html, with the XSPEC implementation available at https://github.com/jeremysanders/xspec_emcee.

References

  1. 1.

    Reynolds, C. S., Young, A. J., Begelman, M. C. & Fabian, A. C. X-ray iron line reverberation from black hole accretion disks. Astrophys. J. 514, 164–179 (1999).

    ADS  Article  Google Scholar 

  2. 2.

    Uttley, P., Cackett, E. M., Fabian, A. C., Kara, E. & Wilkins, D. R. X-ray reverberation around accreting black holes. Astron. Astrophys. Rev. 22, 72–137 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Emmanoulopoulos, D., Papadakis, I. E., Dovciak, M. & McHardy, I. M. General relativistic modelling of the negative reverberation X-ray time delays in AGN. Mon. Not. R. Astron. Soc. 439, 3931–3950 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Chainakun, P., Young, A. J. & Kara, E. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN. Mon. Not. R. Astron. Soc. 460, 3076–3088 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Wilkins, D. R., Cackett, E. M., Fabian, A. C. & Reynolds, C. S. Towards modelling X-ray reverberation in AGN: piecing together the extended corona. Mon. Not. R. Astron. Soc. 458, 200–225 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Chainakun, P., Watcharangkool, A., Young, A. J. & Hancock, S. X-ray time lags in AGN: inverse-Compton scattering and spherical corona model. Mon. Not. R. Astron. Soc. 487, 667–680 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Alston, W. N. et al. The remarkable X-ray variability of IRAS 13224-3809—I. The variability process. Mon. Not. R. Astron. Soc. 482, 2088–2106 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Alston, W. N. Non-stationary variability in accreting compact objects. Mon. Not. R. Astron. Soc. 485, 260–265 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Peterson, B. M. et al. Central masses and broad-line region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys. J. 613, 682–699 (2004).

    ADS  Article  Google Scholar 

  10. 10.

    Buisson, D. J. K., Lohfink, A. M., Alston, W. N. & Fabian, A. C. Ultraviolet and X-ray variability of active galactic nuclei with Swift. Mon. Not. R. Astron. Soc. 464, 3194–3218 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Gallo, L. X-ray perspective of narrow-line Seyfert 1 galaxies. Proc. Sci. NLS1-2018, 034 (2018); https://pos.sissa.it/328/034/pdf

  13. 13.

    Parker, M. L. et al. The response of relativistic outflowing gas to the inner accretion disk of a black hole. Nature 543, 83–86 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Pinto, C. et al. Ultrafast outflows disappear in high-radiation fields. Mon. Not. R. Astron. Soc. 476, 1021–1035 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Jansen, F. et al. XMM-Newton Observatory—I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    ADS  Article  Google Scholar 

  16. 16.

    Chartas, G. et al. Measuring the innermost stable circular orbits of supermassive black holes. Astrophys. J. 837, 26–46 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Fabian, A. C. Broad iron lines in AGN and X-ray binaries. Astrophys. Space Sci. 300, 97–105 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    Fabian, A. C. et al. Long XMM observation of the narrow-line Seyfert 1 galaxy IRAS 13224-3809: rapid variability, high spin and a soft lag. Mon. Not. R. Astron. Soc. 429, 2917–2923 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Jiang, J. et al. The 1.5 Ms observing campaign on IRAS 13224-3809—I. X-ray spectral analysis. Mon. Not. R. Astron. Soc. 477, 3711–3726 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540–542 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Kara, E. et al. A global look at X-ray time lags in Seyfert galaxies. Mon. Not. R. Astron. Soc. 462, 511–531 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Ingram, A. et al. A public relativistic transfer function model for X-ray reverberation mapping of accreting black holes. Mon. Not. R. Astron. Soc. 488, 324–347 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Kara, E., Fabian, A. C., Cackett, E. M., Miniutti, G. & Uttley, P. Revealing the X-ray source in IRAS 13224-3809 through flux-dependent reverberation lags. Mon. Not. R. Astron. Soc. 430, 1408–1413 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Dovciak, M. et al. Reverberation mapping in the lamp-post geometry of the compact corona illuminating a black-hole accretion disc in AGN. Preprint at http://www.cosmos.esa.int/web/xmm-newton/2014-symposium/ (2014).

  25. 25.

    Miniutti, G. & Fabian, A. C. A light bending model for the X-ray temporal and spectral properties of accreting black holes. Mon. Not. R. Astron. Soc. 349, 1435–1448 (2004).

    ADS  Article  Google Scholar 

  26. 26.

    McHardy, I. M., Koerding, E., Knigge, C., Uttley, P. & Fender, R. P. Active galactic nuclei as scaled-up galactic black holes. Nature 444, 730–732 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    Taylor, C. & Reynolds, C. S. X-ray reverberation from black hole accretion disks with realistic geometric thickness. Astrophys. J. 868, 109–125 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Haardt, F. & Maraschi, L. A two-phase model for the X-ray emission from Seyfert galaxies. Astrophys. J. 380, L51–L54 (1991).

    ADS  Article  Google Scholar 

  29. 29.

    Wilkins, D. R. & Gallo, L. C. Driving extreme variability: the evolving corona and evidence for jet launching in Markarian 335. Mon. Not. R. Astron. Soc. 449, 129–146 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Kara, E. et al. The corona contracts in a black-hole transient. Nature 565, 198–201 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Struder, L., Briel, U., Dennerl, K. & Hartmann, R. The European photon imaging camera on XMM-newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    ADS  Article  Google Scholar 

  32. 32.

    Bendat, J. & Piersol, A. Random Data: Analysis and Measurement Procedures (Wiley, 1986).

  33. 33.

    Vaughan, B. A. & Nowak, M. A. X-ray variability coherence: how to compute it, what it means, and how it constrains models of GX 339-4 and Cygnus X-1. Astrophys. J. 474, L43–L46 (1997).

    ADS  Article  Google Scholar 

  34. 34.

    Epitropakis, A. et al. Theoretical modelling of the AGN iron line vs. continuum time-lags in the lamp-post geometry. Astron. Astrophys. 594, A71 (2016).

    Article  Google Scholar 

  35. 35.

    Epitropakis, A. & Papadakis, I. E. The X-ray continuum time-lags and intrinsic coherence in AGN. Mon. Not. R. Astron. Soc. 468, 3568–3601 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Caballero-Garcıa, M. D. et al. Testing the X-ray reverberation model KYNREFREV in a sample of Seyfert 1 active galactic nuclei. Mon. Not. R. Astron. Soc. 480, 2650–2659 (2018).

    ADS  Google Scholar 

  37. 37.

    Ross, R. R. & Fabian, A. C. A comprehensive range of X-ray ionized-reflection models. Mon. Not. R. Astron. Soc. 358, 211–216 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    Arevalo, P. & Uttley, P. Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. Mon. Not. R. Astron. Soc. 367, 801–814 (2006).

    ADS  Article  Google Scholar 

  39. 39.

    Zoghbi, A., Uttley, P. & Fabian, A. C. Understanding reverberation lags in 1H0707-495. Mon. Not. R. Astron. Soc. 412, 59–64 (2011).

    ADS  Article  Google Scholar 

  40. 40.

    Alston, W. N., Vaughan, S. & Uttley, P. The flux-dependent X-ray time lags in NGC 4051. Mon. Not. R. Astron. Soc. 435, 1511–1519 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Alston, W. N., Done, C. & Vaughan, S. X-ray time delays in the narrow line Seyfert 1 galaxy PG 1244+026. Mon. Not. R. Astron. Soc. 439, 1548–1555 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Gelman, A., Carlin, J., Stern, H. & Rubin, D. Bayesian Data Analysis 2nd edn (Taylor & Francis, 2003).

  44. 44.

    Vaughan, S., Edelson, R., Warwick, R. S. & Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 345, 1271–1284 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    Alston, W. N. et al. Discovery of an ~2-h high-frequency X-ray QPO and iron Kα reverberation in the active galaxy MS 2254.9-3712. Mon. Not. R. Astron. Soc. 449, 467–476 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Parker, M. L. et al. Revealing the X-ray variability of AGN with principal component analysis. Mon. Not. R. Astron. Soc. 447, 72–96 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Parker, M. L. et al. Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability. Mon. Not. R. Astron. Soc. 469, 1553–1558 (2017).

    ADS  Article  Google Scholar 

  48. 48.

    Mizumoto, M. et al. Can the relativistic light bending model explain X-ray spectral variations of Seyfert galaxies? Publ. Astron. Soc. Jpn 70, 42 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Yamasaki, H., Mizumoto, M., Ebisawa, K. & Sameshima, H. Origin of the characteristic X-ray spectral variations of IRAS 13224-3809. Publ. Astron. Soc. Jpn 68, 80 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Mizumoto, M. et al. X-ray short-time lags in the Fe-K energy band produced by scattering clouds in active galactic nuclei. Mon. Not. R. Astron. Soc. 478, 971–982 (2018).

    ADS  Article  Google Scholar 

  51. 51.

    Mizumoto, M. et al. X-ray reverberation lags of the Fe–K line due to AGN disc winds. Mon. Not. R. Astron. Soc. 482, 5316–5326 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Uttley, P. & McHardy, I. M. The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 323, L26–L30 (2001).

    ADS  Article  Google Scholar 

  53. 53.

    Uttley, P., McHardy, I. M. & Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 359, 345–362 (2005).

    ADS  Article  Google Scholar 

  54. 54.

    Vaughan, S. & Uttley, P. Studying accreting black holes and neutron stars with time series: beyond the power spectrum. Proc. SPIE 6603, Noise and Fluctuations in Photonics, Quantum Optics, and Communications 660314 (2007); https://doi.org/10.1117/12.724650

  55. 55.

    Gleissner, T. et al. Long term variability of Cyg X-1. II. The rms–flux relation. Astron. Astrophys. 414, 1091–1104 (2004).

    ADS  Article  Google Scholar 

  56. 56.

    Heil, L. M. & Vaughan, S. The linear rms–flux relation in an ultraluminous X-ray source. Mon. Not. R. Astron. Soc. 405, L86–L89 (2010).

    ADS  Article  Google Scholar 

  57. 57.

    Scaringi, S. et al. The universal nature of accretion-induced variability: the rms–flux relation in an accreting white dwarf. Mon. Not. R. Astron. Soc. 421, 2854–2860 (2012).

    ADS  Article  Google Scholar 

  58. 58.

    Heil, L. M., Vaughan, S. & Uttley, P. The ubiquity of the rms–flux relation in black hole X-ray binaries. Mon. Not. R. Astron. Soc. 422, 2620–2631 (2012).

    ADS  Article  Google Scholar 

  59. 59.

    Scaringi, S. A physical model for the flickering variability in cataclysmic variables. Mon. Not. R. Astron. Soc. 438, 1233–1241 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Vaughan, S., Uttley, P., Pounds, K. A., Nandra, K. & Strohmayer, T. E. The rapid X-ray variability of NGC 4051. Mon. Not. R. Astron. Soc. 413, 2489–2499 (2011).

    ADS  Article  Google Scholar 

  61. 61.

    Dobrotka, A. & Ness, J.-U. Differences in the fast optical variability of the dwarf nova V1504 Cyg between quiescence and outbursts detected in Kepler data and simulations of the rms–flux relations. Mon. Not. R. Astron. Soc. 451, 2851–2862 (2015).

    ADS  Article  Google Scholar 

  62. 62.

    Scaringi, S. et al. Accretion-induced variability links young stellar objects, white dwarfs, and black holes. Sci. Adv. 1, e1500686 (2015).

    ADS  Article  Google Scholar 

  63. 63.

    Van de Sande, M., Scaringi, S. & Knigge, C. The rms–flux relation in accreting white dwarfs: another nova-like variable and the first dwarf nova. Mon. Not. R. Astron. Soc. 448, 2430–2437 (2015).

    ADS  Article  Google Scholar 

  64. 64.

    Cowperthwaite, P. S. & Reynolds, C. S. Nonlinear dynamics of accretion disks with stochastic viscosity. Astrophys. J. 791, 126–134 (2014).

    ADS  Article  Google Scholar 

  65. 65.

    Hogg, J. D. & Reynolds, C. S. Testing the propagating fluctuations model with a long, global accretion disk simulation. Astrophys. J. 826, 40–59 (2016).

    ADS  Article  Google Scholar 

  66. 66.

    Lyubarskii, Y. E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 292, 679–685 (1997).

    ADS  Article  Google Scholar 

  67. 67.

    Kotov, O., Churazov, E. & Gilfanov, M. On the X-ray time-lags in the black hole candidates. Mon. Not. R. Astron. Soc. 327, 799–807 (2001).

    ADS  Article  Google Scholar 

  68. 68.

    King, A. R., Pringle, J. E., West, R. G. & Livio, M. Variability in black hole accretion discs. Mon. Not. R. Astron. Soc. 348, 111–122 (2004).

    ADS  Article  Google Scholar 

  69. 69.

    Ingram, A. & van der Klis, M. An exact analytic treatment of propagating mass accretion rate fluctuations in X-ray binaries. Mon. Not. R. Astron. Soc. 434, 1476–1485 (2013).

    ADS  Article  Google Scholar 

  70. 70.

    Risalitti et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

W.N.A. and A.C.F. acknowledge support from the European Research Council through Advanced Grant 340442, on Feedback. M.L.P. and C.P. acknowledge support from ESA Research Fellowships. M.D. and M.D.C.-G. acknowledge support provided by the GA CR grant 18-00533S. M.D.C.-G. acknowledges funding from ESA through a partnership with IAA-CSIC (Spain). D.J.W. and M.J.M. appreciate support from an Ernest Rutherford STFC fellowship. D.J.K.B. acknowledges a Science and Technology Facilities Council studentship. C.S.R. thanks the UK Science and Technology Facilities Council for support under Consolidated Grant ST/R000867/1. This research has been partially funded by the Spanish State Research Agency (AEI) project no. ESP2017-87676-C5-1-R and no. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”—Centro de Astrobiología (CSIC-INTA). G.M. acknowledges funding by the Spanish State Research. Agency (AEI) project no. ESP2017-86582-C4-1-R. B.D.M. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 798726. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the United States (NASA).

Author information

Affiliations

Authors

Contributions

W.N.A. performed the data analysis and lag modelling, and wrote the manuscript. E.K. performed a complementary time-lag data analysis. C.P. and J.J. performed the time-averaged spectral modelling. M.L.P. performed the rms-spectrum modelling. The remaining authors contributed to the discussion and interpretation.

Corresponding author

Correspondence to William N. Alston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Lag frequency spectra for the 16 XMM-Newton orbits.

The best-fitting transfer function model, where MBH, spin a, Rin and inclination i are tied, but free, is shown in black solid line. The reverberation component is shown in red and the intrinsic component is shown in dotted grey. The zero time-lag as a function of frequency is shown as a black horizontal line. The black circles are the data with their 1σ error bars. The time-lag estimate at 2x10-4 Hz in observation 3039 has τ = 307 ± 87 s, but is clipped from the plotting region. The lower panels show the standard residuals. Source data

Extended Data Fig. 2 Table of source properties and best-fitting model posteriors.

Column 1 shows the XMM-Newton orbit number. Column 2 shows the 2–10 keV luminosity in units of 1042 ergs-1. Column 3 shows the photon index Γ from the time-averaged spectral model fits. Column 4 shows the posterior values for source height h from best-fitting the transfer function model fit with parameters Rin, inclination i and spin free and tied across the lag spectra.

Extended Data Fig. 3 Posterior distributions for source height from the best fitting model.

The model has parameters MBH, Rin, inclination i and spin a, free and tied. The median and 68% credible regions (equivalent to 1σ of a Gaussian distribution) are shown in grey.

Extended Data Fig. 4 L2–10 keV luminosity vs source height h from the model fit with fixed spin.

Panel a shows the spin value a = 0.998, panel b shows a = 0.7, and panel c shows a = 0. The corresponding fixed inner disc radius Rin is stated. The solid line is the best-fitting linear regression model together with the 1σ confidence region on the model. The error bars on individual data points are 1σ (see Methods). Source data

Extended Data Fig. 5 MCMC posterior densities for the best fitting model with parameters free.

Panel a shows the spin a, panel b shows the inner disc radius Rin, and panel c shows the inclination i. The median and 68% credible regions (equivalent to 1-sigma of a Gaussian distribution) are shown in grey vertical lines.

Extended Data Fig. 6 Scatter plots for the MCMC posterior parameter distributions.

Shown are the posteriors for spin a, inclination i, Rin, MBH, as well as source height h for two representative observations, with a low (3049) and high (3052) source flux.

Extended Data Fig. 7 The posterior parameters MBH and source height h from the model fit to just one individual lag spectra.

Panel a shows the model fit to observation 3049 and panel b that for observation 3050. The degeneracy between the model parameters can be seen. The red contours are the MCMC posteriors for the joint fit.

Extended Data Fig. 8 Modelling the rms-spectrum with the disc reflection scenario.

The solid blue lines are the model with the inclusion of the ultrafast outflow (UFO) and the dashed blue lines are without the UFO (see Methods for details). Panel a shows the ‘Broad’ rms-spectrum calculated from [0.08,6.0] x 10-4 Hz. Panel b shows the rms-spectra for a low frequency band, LF = [1.0,5.0] x 10-5 Hz. Panel c shows that of the high frequency band, HF = [4.0,20.0] x 10-4 Hz. Panel d shows the power spectral density (PSD) for the data, with the frequency ranges used for the rms-spectra indicated by the vertical solid (Broad), dashed (LF), and dotted (HF) lines. The HF band is where the reverberation signal dominates. 1σ error bars are shown on all data points.

Source data

Source Data Fig. 2

Data values for Fig. 2, ASCII.

Source Data Extended Data Fig. 1

Time lags as a function of frequency for the individual XMM-Newton observations, ASCII.

Source Data Extended Data Fig. 4

Data values for the three plots in Extended Data Fig. 4, ASCII.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing