Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion

Abstract

Calcium–aluminium-rich inclusions (CAIs) are one of the first solids to have condensed in the solar nebula, while presolar grains formed in various evolved stellar environments. It is generally accepted that CAIs formed close to the Sun at temperatures above 1,500 K, where presolar grains could not survive, and were then transported to other regions of the nebula where the accretion of planetesimals took place. In this context, a commonly held view is that presolar grains are found solely in the fine-grained rims surrounding chondrules and in the low-temperature fine-grained matrix that binds the various meteoritic components together. Here we demonstrate, on the basis of noble gas isotopic signatures, that presolar SiC grains were incorporated into fine-grained CAIs in the Allende carbonaceous chondrite at the time of their formation, and have survived parent-body processing. This finding provides new clues on the conditions in the nascent Solar System at the condensation of the first solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Three-isotope plots showing Xe composition in the Allende Curious Marie CAI.
Fig. 2: Krypton in the Allende Curious Marie CAI.
Fig. 3: Neon in the Allende Curious Marie CAI.
Fig. 4: Correlation between 22Ne/130Xe and 86Kr/82Kr in the G noble gas component carried by the presolar SiC grains.

Data availability

The data that support the plots within this paper and other findings of this study are provided in the Supplementary Information as Supplementary Tables 14, and are also available from the corresponding author upon reasonable request.

References

  1. 1.

    Black, D. C. & Pepin, R. O. Trapped neon in meteorites—II. Earth Planet. Sci. Lett. 6, 395–405 (1969).

  2. 2.

    Lewis, R. S., Srinivasan, B. & Anders, E. Host phase of a strange xenon component in Allende. Science 190, 1251–1262 (1975).

  3. 3.

    Srinivasan, B. & Anders, E. Noble gases in the Murchison meteorite. Science 201, 51–56 (1978).

  4. 4.

    Tang, M. & Anders, E. Isotopic anomalies of Ne, Xe, and C in meteorites. II Interstellar diamond and SiC: carriers of exotic noble gases. Geochim. Cosmochim. Acta 52, 1235–1244 (1988).

  5. 5.

    Lewis, R. S., Amari, S. & Anders, E. Meteoritic silicon carbide: pristine material from carbon stars. Nature 348, 293–298 (1990).

  6. 6.

    Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58, 459–470 (1994).

  7. 7.

    Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994).

  8. 8.

    Tang, M., Anders, E., Hoppe, P. & Zinner, E. Meteoritic SiC and its stellar sources: implications for galactic chemical evolution. Nature 339, 351–354 (1989).

  9. 9.

    Zinner, E., Tang, M. & Anders, E. Interstellar SiC in the Murchison and Murray meteorites: isotopic composition of Ne, Xe, Si, C, and N. Geochim. Cosmochim. Acta 53, 3273–3290 (1989).

  10. 10.

    Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite. Nature 332, 700–702 (1988).

  11. 11.

    Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).

  12. 12.

    Krot, A. N. et al. Amoeboid olivine aggregates and related objects in carbonaceous chondrites: Records of nebular and asteroid processes. Chem. Erde 64, 185–239 (2004).

  13. 13.

    Smith, P. S., Huneke, J. C., Rajan, R. S. & Wasserburg, G. J. Neon and argon in the Allende meteorite. Geochim. Cosmochim. Acta 41, 627–647 (1977).

  14. 14.

    Vogel, N., Baur, H., Bischoff, A., Leya, I. & Wieler, R. Noble gas studies in CAIs from CV3 chondrites: no evidence for primordial noble gases. Meteorit. Planet. Sci. 39, 767–778 (2004).

  15. 15.

    Göbel, R., Begemann, F. & Ott, U. On neutron induced and other noble gases in Allende inclusions. Geochim. Cosmochim. Acta 46, 1777–1792 (1982).

  16. 16.

    Russel, S. S., Franchi, I. A., Verchovsky, A. B., Ash, R. D. & Pillinger, C. T. Carbon, nitrogen, and noble gases in Vigarano (CV) calcium–aluminum-rich inclusion: evidence for silicon carbide in refractory inclusions (abstract). Meteorit. Planet. Sci. 33, A132 (1998).

  17. 17.

    Pravdivtseva, O. V. et al. The I-Xe record of alteration in the Allende CV chondrite. Geochim. Cosmochim. Acta 67, 5011–5026 (2003).

  18. 18.

    Swindle, T. D., Caffee, M. W., Hohenberg, C. M. & Lindstrom, M. M. I-Xe studies of Allende inclusions: EGGs and the Pink Angel. Geochim. Cosmochim. Acta 47, 2157–2177 (1988).

  19. 19.

    Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011).

  20. 20.

    Shollenberger, Q. R., Render, J. & Brennecka, G. A. Er, Yb, and Hf isotopic compositions of refractory inclusions: an integrated isotopic fingerprint of the Solar System’s earliest reservoir. Earth Planet. Sci. Lett. 495, 12–23 (2018).

  21. 21.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

  22. 22.

    MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L. & Krot, A. N. in Chondrites and the Protoplanetary Disk (eds Krot, A. N. et al.) 225‒247 (Astronomical Society of the Pacific Conference Series Vol. 341, Sheridan Books, 2005).

  23. 23.

    Tissot, F. L. H., Dauphas, N. & Grossman, L. Origin of uranium isotope variations in early solar nebula condensates. Sci. Adv. 2, e1501400 (2016).

  24. 24.

    Boynton, W. V. Fractionation in the solar nebula: condensation of yttrium and rare earth elements. Geochim. Cosmochim. Acta 39, 569–584 (1975).

  25. 25.

    Pravdivtseva, O., Meshik, A., Tissot F. L. H. & Dauphas, N. I-Xe studies of aqueous alteration in the Allende CAI Curious Marie. In Proc. 49th Lunar and Planetary Science Conference abstr. 2959 (Lunar and Planetary Institute, 2018).

  26. 26.

    MacPherson, G. J. & Grossman, L. “Fluffy” type A Ca–Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 48, 29–46 (1984).

  27. 27.

    Busemann, G., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

  28. 28.

    Gallino, R., Busso, M., Picchio, G. & Raiteri, C. M. On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature 348, 298–302 (1990).

  29. 29.

    Lewis, R. S. Rare gases in separated whitlockite from the St. Severin chondrite: xenon and krypton from fission of extinct 244Pu. Geochim. Cosmochim. Acta 39, 417–432 (1975).

  30. 30.

    Hohenberg, C. M., Hudson, B., Kennedy, B. M. & Podosek, F. A. Xenon spallation systematics in Angra dos Reis. Geochim. Cosmochim. Acta 45, 1909–1915 (1981).

  31. 31.

    Kim, J. S. & Marti, K. Solar type xenon: isotopic abundances in Pesyanoe. Proc. Lunar Planet Sci. 22, 145–151 (1992).

  32. 32.

    Lavielle, B. & Marti, K. Cosmic ray produced Kr in St. Severin core AIII. In Proc. 18th Lunar and Planetary Science Conference 565‒572 (Lunar and Planetary Institute, 1988).

  33. 33.

    Leya, I., Lange, H. J., Neumann, S., Wieler, R. & Michel, R. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic ray particles. Meteorit. Planet. Sci. 35, 259–289 (2000).

  34. 34.

    Mughabghab, S. F. Thermal Neutron Capture Cross-sections Resonance Integrals and g-factors INDC(NDS)-440 (IAEA, 2003).

  35. 35.

    Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

  36. 36.

    Huss, G. R. & Lewis, R. S. Presolar diamond, SiC and graphite in primitive chondrites: abundances as function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

  37. 37.

    Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 67, 4823–4848 (2003).

  38. 38.

    Davidson, J. et al. Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS. Geochim. Cosmochim. Acta 139, 248–266 (2014).

  39. 39.

    Ott, U. & Merchel, S. Noble gases and not so unusual size of presolar SiC in Murchison. In Proc. 31st Lunar and Planetary Science Conference abstr. 1356 (Lunar and Planetary Institute, 2000).

  40. 40.

    Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. P. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996).

  41. 41.

    Lewis, R. S., Anders, E. & Drain, B. T. Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339, 117–121 (1989).

  42. 42.

    Mendybaev, R. A. et al. Volatilization kinetics of silicon carbide in reducing gases: An experimental study with applications to survival of presolar grains in the solar nebula. Geochim. Cosmochim. Acta 66, 661–682 (2002).

  43. 43.

    Stroud, R. Structural and elemental transformation of meteoritic nanodiamonds during in situ heating in a UHV scanning transmission electron microscope. In Proc. 82nd Annual Meeting of The Meteoritical Society abstr. 6457 (Lunar and Planetary Institute, 2019).

  44. 44.

    Kimura, M. & Ikeda, Yu Anhydrous alteration of Allende chondrules in the solar nebula II: alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc. NIPR Simp. Antarct. Meteor. 8, 123–138 (1995).

  45. 45.

    Davis, A. M. & Grossman, L. Condensation and fractionation of rare earth in the solar nebula. Geochim. Cosmochim. Acta 43, 1611–1632 (1979).

  46. 46.

    Krot, A. N., Petaev, M. I. & Bland, P. A. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism. Antarct. Meteor. Res 17, 153–171 (2004).

  47. 47.

    Krot, A. N. et al. Mineralogy, petrography, oxygen and magnesium isotopic compositions and formation age of grossular-bearing assemblages in the Allende CAIs. In Proc. 41st Lunar and Planetary Science Conference abstr. 1406 (Lunar and Planetary Institute, 2010).

  48. 48.

    Brearley, A. J. & Krot, A. N. in Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes (eds Harlov, D. & Austrheim, H.) 653‒782 (Lecture Notes in Earth Sciences Series, Springer Verlag, 2013).

  49. 49.

    Tang, H., Liu, M.-Ch, McKeegan, K. D., Tissot, F. L. H. & Dauphas, N. In situ isotopic studies of the U-depleted Allende CAI Curious Marie: pre-accretionary alteration and the co-existence of 26Al and 36Cl in the early solar nebula. Geochim. Cosmochim. Acta 207, 1–18 (2017).

  50. 50.

    Krot, A. N., Scott, E. R. & Zolensky, M. E. Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteor. Planet. Sci. 32, 31–49 (1997).

  51. 51.

    Hohenberg, C. M. High sensitivity pulse-counting mass-spectrometer system for noble gas analysis. Rev. Sci. Instrum. 51, 1075–1082 (1980).

  52. 52.

    Deer, W. A., Howie, R. A. & Zussman, J. An Introduction to the Rock-Forming Minerals (Mineralogical Society of Great Britain and Ireland, 2013).

Download references

Acknowledgements

We are grateful to D. Nakashima and A. Nguyen for the constructive and thorough review and for the help provided during the editorial process. We thank P. Heck, J. Holstein, and the Robert A. Pritzker Center for Meteoritics and Polar Studies at the Field Museum for providing the Curious Marie specimen (catalogue number ME3364-3.2). This work was supported by NASA grant 80NSSC19K0508 to O.P.; a Crosby Postdoctoral Fellowships (MIT), NSF-EAR grant 1824002, and start-up funds provided by Caltech to F.L.H.T.; by NASA grants NNX17AE86G (LARS), NNX17AE87G 531 (Emerging Worlds) and 80NSSC17K0744 (Habitable Worlds) to N.D.

Author information

O.P designed the study, conducted the noble gas analyses, treated the data and wrote the first draft of the paper. F.L.H.T. selected, prepared and characterized the studied sample. O.P. and S.A. interpreted the data. N.D. critically contributed to the paper presentation. All the authors contributed to the discussion of the results and commented on the manuscript.

Correspondence to O. Pravdivtseva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Daisuke Nakashima, Ann Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pravdivtseva, O., Tissot, F.L.H., Dauphas, N. et al. Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion. Nat Astron (2020). https://doi.org/10.1038/s41550-019-1000-z

Download citation