Overconfidence in Bayesian analyses of galaxy rotation curves

Matters Arising to this article was published on 27 January 2020

The Original Article was published on 13 November 2018

The Original Article was published on 13 November 2018

The Original Article was published on 18 June 2018

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Rodrigues, D. C., Marra, V., Del Popolo, A. & Davari, Z. Absence of a fundamental acceleration scale in galaxies. Nat. Astron. 2, 668–672 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Rodrigues, D. C., Marra, V., Del Popolo, A. & Davari, Z. Reply to ‘Presence of a fundamental acceleration scale in galaxies’ and ‘A common Milgromian acceleration scale in nature’ Nat. Astron. 2, 927–929 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    McGaugh, S. S., Li, P., Lelli, F. & Schombert, J. M. Presence of a fundamental acceleration scale in galaxies. Nat. Astron. 2, 924 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Kroupa, P. et al. A common Milgromian acceleration scale in nature. Nat. Astron. 2, 925–926 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Lelli, F., McGaugh, S. S. & Schombert, J. M. SPARC: Mass models FOR 175 disk galaxies with SPITZ. Astron. J. 152, 157 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from things. Astron. J. 136, 2648–2719 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Andrae, R., Schulze-Hartung, T. & Melchior, P. Dos and don’ts of reduced chi-squared. Preprint at https://arxiv.org/abs/1012.3754 (2010).

  8. 8.

    Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    Article  Google Scholar 

  9. 9.

    Jin, S., Thulin, M. & Larsson, R. Approximate Bayesianity of frequentist confidence intervals for a binomial proportion. Am. Stat. 71, 106–111 (2017).

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chang, Z. & Zhou, Y. Is there a fundamental acceleration scale in galaxies? Mon. Not. R. Astron. Soc. 486, 1658–1666 (2019).

    ADS  Article  Google Scholar 

  11. 11.

    Marchand, E. & Strawderman, W. E. On Bayesian credible sets, restricted parameter spaces and frequentist coverage. Electron. J. Stat. 7, 1419–1431 (2013).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sweeting, T. J. On predictive probability matching priors. Inst. Mat. Stat. Collections 3, 46–59 (2008).

    MathSciNet  Article  Google Scholar 

  13. 13.

    Bayarri, M. J. & Berger, J. O. The interplay of Bayesian and frequentist analysis. Stat. Sci. 19, 58–80 (2004).

    MathSciNet  Article  Google Scholar 

  14. 14.

    Berger, J. O., Boukai, B. & Wang, Y. Unified frequentist and Bayesian testing of a precise hypothesis. Stat. Sci. 12, 133–160 (1997).

    MathSciNet  Article  Google Scholar 

  15. 15.

    Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Kennedy, L. A. et al. Not every credible interval is credible: evaluating robustness in the presence of contamination in Bayesian data analysis. Behav. Res. Methods 49, 2219–2234 (2017).

    Article  Google Scholar 

  17. 17.

    Yang, Z. & Zhu, T. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proc. Natl Acad. Sci. USA 115, 1854–1859 (2018).

    MathSciNet  Article  Google Scholar 

  18. 18.

    Lv, J. & Liu, J. S. Model selection principles in misspecified models. J. R. Stat. Soc. Ser. B 76, 141–167 (2014).

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gelman, A. & Shalizi, C. R. Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 66, 8–38 (2013).

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gabry, J. et al. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A 182, 389–402 (2019).

    MathSciNet  Article  Google Scholar 

  21. 21.

    Gelman, A., Simpson, D. & Betancourt, M. The prior can often only be understood in the context of the likelihood. Entropy 19, 555 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Lyddon, S. P., Holmes, C. C. & Walker, S. G. General Bayesian updating and the loss-likelihood bootstrap. Biometrika 106, 465–478 (2019).

    MathSciNet  Article  Google Scholar 

  23. 23.

    Bernton, E. et al. On parameter estimation with the Wasserstein distance. Inf. Inference 8, 657–676 (2019).

    MathSciNet  Article  Google Scholar 

  24. 24.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

  25. 25.

    Li, P., Lelli, F., McGaugh, S. & Schombert, J. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 615, A3 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

E.C. recognized the core statistical problem, conceived the project, and wrote an initial draft. G.W.A. and J.M.B. contributed expertise towards understanding key domain-specific issues and refining the arguments presented. All authors participated in revising the final manuscript.

Corresponding author

Correspondence to Ewan Cameron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Johannes Buchner, Roberto Trotta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cameron, E., Angus, G.W. & Burgess, J.M. Overconfidence in Bayesian analyses of galaxy rotation curves. Nat Astron 4, 132–133 (2020). https://doi.org/10.1038/s41550-019-0998-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing