Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The partitioning of the inner and outer Solar System by a structured protoplanetary disk

Abstract

Mass-independent isotopic anomalies define two cosmochemically distinct regions: the carbonaceous and non-carbonaceous meteorites1, implying that the non-carbonaceous (terrestrial) and carbonaceous (Jovian) reservoirs were kept separate during and after planet formation. The formation of Jupiter is widely invoked to explain this compositional dichotomy by acting as an effective barrier between the two reservoirs2. Jupiter’s solid kernel possibly grew to 20 Earth masses (\({M}_{\oplus }\)) in 1 Myr from the accretion of submetre-sized objects (‘pebbles’), followed by slower accretion via planetesimals. Subsequent gas envelope contraction led to Jupiter’s formation as a gas giant3. Here, we use dynamical simulations to show that the growth of Jupiter from pebble accretion is not fast enough to be responsible for the inferred separation of the terrestrial and Jovian reservoirs. We propose instead that the dichotomy was caused by a pressure maximum in the disk near Jupiter’s location, which created a ringed structure such as those detected by ALMA4. One or multiple such—potentially mobile—long-lived pressure maxima almost completely prevented pebbles from the Jovian region reaching the terrestrial zone, maintaining a compositional partition between the two regions. We thus suggest that our young Solar System’s protoplanetary disk developed at least one and probably multiple rings, which potentially triggered the formation of the giant planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Evolution of the mass of Jupiter and a Mars analogue as a function of time when growing by pebble accretion.
Fig. 2: Outcome of pebble accretion simulations with embryos or planetesimals.
Fig. 3: Mean isotopic anomalies for several major groups of meteorites, Earth and Mars.
Fig. 4: Schematic illustration of the protoplanetary disk structure of the infant Solar System and the possible formation locations of the giant planets.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Code availability

The source codes and simulation output for the model used in this study are archived at the Earth Life Science Institute of the Tokyo Institute of Technology and are available on request from the corresponding authors. The SyMBA code that our simulations are based on is not in the public domain. It can be requested from its main author H. F. Levison at the Southwest Research Institute.

References

  1. 1.

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. 114, 6712–6716 (2017).

    ADS  Google Scholar 

  3. 3.

    Alibert, Y. et al. The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat. Astron. 2, 873–877 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. 869, L43 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Lambrechts, M., Johansen, A. & Morbidelli, A. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Ida, S., Guillot, T. & Morbidelli, A. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591, A72 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Ormel, C. W. & Liu, B. Catching drifting pebbles. II. A stochastic equation of motion for pebbles. Astron. Astrophys. 615, A178 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Sato, T., Okuzumi, S. & Ida, S. On the water delivery to terrestrial embryos by ice pebble accretion. Astron. Astrophys. 589, A15 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).

    ADS  Article  Google Scholar 

  12. 12.

    Matsumura, S., Brasser, R. & Ida, S. N-body simulations of planet formation via pebble accretion. I. First results. Astron. Astrophys. 607, A67 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Johansen, A., Ida, S. & Brasser, R. How planetary growth outperforms migration. Astron. Astrophys. 622, A202 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Woo, J. M. Y., Brasser, R., Matsumura, S., Mojzsis, S. J. & Ida, S. The curious case of Mars’ formation. Astron. Astrophys. 617, A17 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Levison, H. F., Kretke, K. A., Walsh, K. J. & Bottke, W. F. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl Acad. Sci. 112, 14180–14185 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Kretke, K. A. & Lin, D. N. C. Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophys. J. 664, L55–L58 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Vorobyov, E. I., Akimkin, V., Stoyanovskaya, O., Pavlyuchenkov, Y. & Liu, H. B. Early evolution of viscous and self-gravitating circumstellar disks with a dust component. Astron. Astrophys. 614, A98 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    van der Marel, N., Williams, J. P. & Bruderer, S. Rings and gaps in protoplanetary disks: planets or snowlines? Astrophys. J. 867, L14 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).

    Article  Google Scholar 

  23. 23.

    van der Marel, N. et al. A concentration of centimeter-sized grains in the Ophiuchus IRS 48 dust trap. Astrophys. J. 810, L7 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Pinilla, P., Flock, M., Ovelar, M. & Birnstiel, T. Can dead zones create structures like a transition disk? Astron. Astrophys. 596, A81 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Desch, S. J., Kalyaan, A. & Alexander, C. M. O’D. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. 238, A11 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Andrews, S. M. et al. Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. Astrophys. J. 820, L40 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Long, F. et al. Gaps and rings in an ALMA survey of disks in the Taurus star-forming region. Astrophys. J. 869, A17 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Kanagawa, K. D. et al. Impacts of dust feedback on a dust ring induced by a planet in a protoplanetary disk. Astrophys. J. 868, A48 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  32. 32.

    Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998).

    ADS  Article  Google Scholar 

  33. 33.

    Garaud, P. & Lin, D. N. C. The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. Astrophys. J. 654, 606–624 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Ikoma, M., Nakazawa, K. & Emori, H. Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000).

    ADS  Article  Google Scholar 

  36. 36.

    Ida, S., Lin, D. N. C. & Nagasawa, M. Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants. Astrophys. J. 775, 42 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    Lin, D. N. C. & Papaloizou, J. C. B. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986).

    ADS  Article  Google Scholar 

  39. 39.

    Coleman, G. A. L. & Nelson, R. P. On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. Mon. Not. R. Astron. Soc. 445, 479–499 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal type I planetary migration. II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Fendyke, S. M. & Nelson, R. P. On the corotation torque for low-mass eccentric planets. Mon. Not. R. Astron. Soc. 437, 96–107 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Cresswell, P. & Nelson, R. P. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Tanaka, H. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. Astrophys. J. 602, 388–395 (2004).

    ADS  Article  Google Scholar 

  44. 44.

    Wisdom, J. & Holman, M. Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991).

    ADS  Article  Google Scholar 

  45. 45.

    Kinoshita, H., Yoshida, H. & Nakai, H. Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991).

    ADS  MATH  Article  Google Scholar 

  46. 46.

    Seager, S., Kuchner, M., Hier-Majumder, C. A. & Militzer, B. Mass–radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007).

    ADS  Article  Google Scholar 

  47. 47.

    Lissauer, J. J. et al. Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. 197, A8 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Clayton, R. N. & Mayeda, T. K. Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet. Sci. Lett. 62, 1–6 (1983).

    ADS  Article  Google Scholar 

  49. 49.

    Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996).

    ADS  Article  Google Scholar 

  50. 50.

    Franchi, I. A., Wright, I. P., Sexton, A. S. & Pillinger, C. T. The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999).

    ADS  Article  Google Scholar 

  51. 51.

    Rubin, A. E. et al. Los Angeles: the most differentiated basaltic Martian meteorite. Geology 28, 1011–1014 (2000).

    ADS  Article  Google Scholar 

  52. 52.

    Mittlefehldt, D. W., Clayton, R. N., Drake, M. J. & Righter, K. Oxygen isotopic composition and chemical correlations in meteorites and the terrestrial planets. Rev. Mineral. Geochem. 68, 399–428 (2008).

    Article  Google Scholar 

  53. 53.

    Agee, C. B. et al. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339, 780–785 (2013).

    ADS  Article  Google Scholar 

  54. 54.

    Wittmann, A. et al. Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 50, 326–352 (2015).

    ADS  Article  Google Scholar 

  55. 55.

    Trinquier, A., Birck, J.-L. & Allegre, C. J. Widespread 54Cr heterogeneity in the inner Solar System. Astrophys. J. 655, 1179–1185 (2007).

    ADS  Article  Google Scholar 

  56. 56.

    Trinquier, A., Birck, J.-L., Allegre, C. J., Göpel, C. & Ulfbeck, D. 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008).

    ADS  Article  Google Scholar 

  57. 57.

    Qin, L., Alexander, C. M. O’D., Carlson, R. W., Horan, M. F. & Yokoyama, T. Contributors to chromium isotope variation of meteorites. Geochim. Cosmochim. Acta 74, 1122–1145 (2010).

    ADS  Article  Google Scholar 

  58. 58.

    Petitat, M., Birck, J.-L., Luu, T. H. & Gounelle, M. The chromium isotopic composition of the ungrouped carbonaceous chondrite Tagish Lake. Astrophys. J. 736, 23–31 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Yamakawa, A. & Yin, Q.-Z. Chromium isotopic systematics of the Sutter’s Mill carbonaceous chondrite: implications for isotopic heterogeneities of the early Solar System. Meteorit. Planet. Sci. 49, 2118–2127 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Shukolyukov, A. & Lugmair, G. W. Manganese-chromium isotope systematics of carbonaceous chondrites. Earth Planet. Sci. Lett. 250, 200–213 (2006).

    ADS  Article  Google Scholar 

  61. 61.

    Yamashita, K., Maruyama, S., Yamakawa, A. & Nakamura, E. 53Mn-53Cr chronometry of CB chondrites: evidence for uniform distribution of 53Mn in the early Solar System. Astrophys. J. 728, A165 (2010).

    ADS  Article  Google Scholar 

  62. 62.

    Larsen, K. K. et al. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. Lett. 735, L37 (2011).

    ADS  Article  Google Scholar 

  63. 63.

    Göpel, C. & Birck, J.-L. Mn/Cr systematics: a tool to discriminate the origin of primitive meteorites? Geochim. Cosmochim. Acta 74, A348 (2010).

    Google Scholar 

  64. 64.

    Qin, L. et al. The chromium isotopic composition of Almahata Sitta. Meteorit. Planet. Sci. 45, 1771–1777 (2010).

    ADS  Article  Google Scholar 

  65. 65.

    Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–377 (2009).

    ADS  Article  Google Scholar 

  66. 66.

    Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geo. 5, 251–255 (2012).

    ADS  Article  Google Scholar 

  67. 67.

    Zhang, J., Dauphas, N., Davis, A. M. & Pourmand, A. A new method for MC-ICPMS measurement of titanium isotopic composition: identification of correlated isotope anomalies in meteorites. J. Anal. At. Spectrom. 26, 2197–2205 (2011).

    Article  Google Scholar 

  68. 68.

    Regelous, M., Elliott, T. & Coath, C. D. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272, 330–338 (2008).

    ADS  Article  Google Scholar 

  69. 69.

    Steele, R. C. J., Coath, C. D., Regelous, M., Russell, S. & Elliott, T. Neutron-poor nickel isotope anomalies in meteorites. Astrophys. J. 758, A59 (2012).

    ADS  Article  Google Scholar 

  70. 70.

    Steele, R. C. J., Elliott, T., Coath, C. D. & Regelous, M. Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75, 7906–7925 (2011).

    ADS  Article  Google Scholar 

  71. 71.

    Tang, H. & Dauphas, N. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012).

    ADS  Article  Google Scholar 

  72. 72.

    Tang, H. & Dauphas, N. 60Fe-60Ni chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–274 (2014).

    ADS  Article  Google Scholar 

  73. 73.

    Dauphas, N. et al. Iron-60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula. Astrophys. J. 686, 560–569 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Matsumura for the pebble accretion code, B. Bitsch for sharing the location of gas pressure maxima outwards of planets and E. Vorobyov for pointing out dust pile-up in the inner disk. R.B. acknowledges financial assistance from the Japan Society for the Promotion of Science (JSPS) International Joint Research Fund (JP17KK0089) and JSPS Shingakujutsu Kobo (JP19H05071).

Author information

Affiliations

Authors

Contributions

Both authors devised the study and wrote the manuscript. R.B. ran and analysed the dynamical simulations. S.J.M. compiled the cosmochemical isotopic database.

Corresponding authors

Correspondence to R. Brasser or S. J. Mojzsis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional Embryo Simulations.

Additional simulations with multiple seed planets, distributed between 0.5 au and either 1.5 au or 3.5 au. In each simulation all the seeds initially have the same mass (either 10\({}^{-3}\) or 10\({}^{-4}\) \({\mathrm{M}}_{\oplus}\)), but we vary this mass between simulations. Initial disk temperature at 1 au is either 200 K, 250 K or 300 K. The top row has an initial disc temperature of 200 K, middle row 250 K and bottom row 300 K. Red dots are for simulations with embryos between 0.5 au and 3.5 au, black for embryos terminating at 1.5 au. The left column has embryos with initial mass 10\({}^{-3}\) \({\mathrm{M}}_{\oplus}\), the right column with 10\({}^{-4}\) \({\mathrm{M}}_{\oplus}\). In all cases, placing embryos in the asteroid belt overshoots the mass in that region, though a truncation near 2 au may be viable to explore in future work.

Extended Data Fig. 2 Planetesimal accretion of pebbles without Jupiter.

Initial (black) and final (red) masses and semi-major axes of a swarm of planetesimals with diameters from 100 km to 2000 km without Jupiter. The planetesimals have with a cumulative size-frequency distribution N(>D)\(\propto\)D\({}^{-5/2}\)6 and initial density 2000 kg m\({}^{-3}\); this is a top-heavy distribution where most of the mass is in the large bodies. The disk temperature at 1 au was set to 200 K. In the innermost portion of the planetesimal disk bodies accrete >50% of their own mass in pebbles. The growth is inside-out.

Extended Data Fig. 3 Growth tracks of Jupiter, Saturn, Uranus and Neptune with pebble accretion.

Evolution of the mass of Jupiter, Saturn, Uranus, Neptune and Mars analogue as a function of time when growing by pebble accretion for nominal pebble flux and growth of Jupiter consistent with cosmochemical ages. The original disk temperature at 1 au is 250 K. No migration was included.

Extended Data Fig. 4 Meteorite parent body model formation ages.

Model formation age of chondrite parent bodies versus isotopic anomalies in chromium-54 (N. Sugiura and W. Fujiya, Meteorit. Planet. Sci. 49, 772–787; 2014). Bodies in the inner solar system tend to form earlier than bodies in the outer solar system.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brasser, R., Mojzsis, S.J. The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nat Astron 4, 492–499 (2020). https://doi.org/10.1038/s41550-019-0978-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing