Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dispersed Matter Planet Project discoveries of ablating planets orbiting nearby bright stars



Some highly irradiated close-in exoplanets orbit stars showing anomalously low stellar chromospheric emission. We attribute this deficit to absorption by circumstellar gas replenished by mass loss from ablating planets. Here we report statistics validating this hypothesis. Among ~3,000 nearby, bright, main-sequence stars, ~40 show depressed chromospheric emission indicative of undiscovered mass-losing planets. The Dispersed Matter Planet Project uses high-precision, high-cadence radial velocity (RV) measurements to detect these planets. We summarize results for two planetary systems (DMPP-1 and DMPP-3) and fully present observations revealing an Mp sin i = 0.469 MJ planet in a 5.207 d orbit around the γ Doradus pulsator HD 11231 (DMPP-2). We have detected short-period planets wherever we have made more than 60 RV measurements, demonstrating that we have originated a very efficient method for detecting nearby compact planetary systems. These shrouded, ablating planetary systems may be a short-lived phase related to the Neptunian desert, that is, the dearth of intermediate-mass planets at short orbital periods. The circumstellar gas facilitates compositional analysis, allowing empirical exogeology in the cases of sublimating rocky planets. Dispersed Matter Planet Project discoveries will be important for establishing the empirical mass–radius–composition relationship(s) for low-mass planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The sample of 2,716 main-sequence (MS) stars from which our targets were drawn13 and known hot-Jupiter (HJ) hosts14.
Fig. 2: Distance and magnitude distributions of DMPP targets.
Fig. 3: Observations of DMPP-2 with MIKE and HARPS showing derived RVs and corresponding uncertainties (RV error bars are 1σ throughout).
Fig. 4: Window function and log-likelihood periodograms for DMPP-2 RVs.
Fig. 5: Folded RVs for DMPP-2 corresponding to the maximum a posteriori solutions in Table 1.
Fig. 6: MP sin i versus orbital period for the first three DMPP systems.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author,, on reasonable request. All HARPS RV data, collected under ESO programmes 081.C-0148(A), 088.C-0662(A), 091.C-0866(C), 095.C-0799(A), 096.C-0876(A), 097.C-0390(B), 098.C-0269(A) 098.C0499(A), 098.C-0269(B), 099.C-0798(A) and 0100.C-0836(A), are publically available from the ESO archive.


  1. 1.

    Sanchis-Ojeda, R. et al. A study of the shortest-period planets found with Kepler. Astrophys. J. 787, 47 (2014).

    ADS  Google Scholar 

  2. 2.

    Staab, D. et al. A compact multi-planet system around a bright nearby star from the Dispersed Matter Planet Project. Nat. Astron. (2019).

  3. 3.

    Barnes, J. R. et al. An ablating 2.6-M planet in an eccentric binary from the Dispersed Matter Planet Project. Nat. Astron. (2019).

  4. 4.

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    ADS  Google Scholar 

  5. 5.

    Hebb, L. et al. WASP-12b: the hottest transiting extrasolar planet yet discovered. Astrophys. J. 693, 1920–1928 (2009).

    ADS  Google Scholar 

  6. 6.

    Fossati, L. et al. Metals in the exosphere of the highly irradiated planet WASP-12b. Astrophys. J. 714, L222–L227 (2010).

    ADS  Google Scholar 

  7. 7.

    Haswell, C. A. et al. Near-ultraviolet absorption, chromospheric activity, and star–planet interactions in the WASP-12 system. Astrophys. J. 760, 79 (2012).

    ADS  Google Scholar 

  8. 8.

    Haswell, C. A. in Handbook of Exoplanets (eds Deeg H. J. & Belmonte, J.) (Springer, 2018).

  9. 9.

    Fossati, L. et al. Absorbing gas around the WASP-12 planetary system. Astrophys. J. 766, L20 (2013).

    ADS  Google Scholar 

  10. 10.

    Debrecht, A. et al. Generation of a circumstellar gas disc by hot Jupiter WASP-12b. Mon. Not. R. Astron. Soc. 478, 2592–2598 (2018).

    ADS  Google Scholar 

  11. 11.

    Staab, D. et al. SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star–planet interactions. Mon. Not. R. Astron. Soc. 466, 738–748 (2017).

    ADS  Google Scholar 

  12. 12.

    Doherty, J. P. J. Activity of Close-in Exoplanet Hosts. PhD thesis, Open Univ. (2020).

  13. 13.

    Pace, G. Chromospheric activity as age indicator. An L-shaped chromospheric-activity versus age diagram. Astron. Astrophys. 551, L8 (2013).

    ADS  Google Scholar 

  14. 14.

    Knutson, H. A., Howard, A. W. & Isaacson, H. A correlation between stellar activity and hot Jupiter emission spectra. Astrophys. J. 720, 1569–1576 (2010).

    ADS  Google Scholar 

  15. 15.

    Fossati, L. et al. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies. Astron. Astrophys. 601, A104 (2017).

    Google Scholar 

  16. 16.

    Rappaport, S. et al. Possible disintegrating short-period super-Mercury orbiting KIC 12557548. Astrophys. J. 752, 1 (2012).

    ADS  Google Scholar 

  17. 17.

    Bochinski, J. J., Haswell, C. A., Marsh, T. R., Dhillon, V. S. & Littlefair, S. P. Direct evidence for an evolving dust cloud from the exoplanet KIC 12557548 b. Astrophys. J. Lett. 800, L21 (2015).

    ADS  Google Scholar 

  18. 18.

    Delisle, J. B. et al. The HARPS search for southern extra-solar planets. XLIII. A compact system of four super-Earth planets orbiting HD 215152. Astron. Astrophys. 614, A133 (2018).

    Google Scholar 

  19. 19.

    Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S. & Athey, A. E. MIKE: a double echelle spectrograph for the Magellan Telescopes at Las Campanas Observatory. Proc. SPIE 4841, 1694–1704 (2003).

    ADS  Google Scholar 

  20. 20.

    Anglada-Escudé, G. et al. A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. Astron. Astrophys. 556, A126 (2013).

    Google Scholar 

  21. 21.

    Dawson, R. I. & Fabrycky, D. C. Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010).

    ADS  Google Scholar 

  22. 22.

    Balona, L. A. Gaia luminosities of pulsating A-F stars in the Kepler field. Mon. Not. R. Astron. Soc. 479, 183–191 (2018).

    ADS  Google Scholar 

  23. 23.

    Anglada-Escudé, G. et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437–440 (2016).

    ADS  Google Scholar 

  24. 24.

    Dupret, M. Theoretical aspects of g-mode pulsations in γ Doradus stars. Commun. Asteroseismol. 150, 98–105 (2007).

    ADS  Google Scholar 

  25. 25.

    Breger, M. Delta Scuti and related stars. Publ. Astron. Soc. Pac. 91, 5–26 (1979).

    ADS  Google Scholar 

  26. 26.

    Henry, G. W. & Fekel, F. C. Eleven new γ Doradus stars. Astron. J. 129, 2026–2033 (2005).

    ADS  Google Scholar 

  27. 27.

    Bradley, P. A. et al. Results of a search for γ Dor and δ Sct stars with the Kepler spacecraft. Astron. J. 149, 68 (2015).

    ADS  Google Scholar 

  28. 28.

    Pinsonneault, M. H. et al. A revised effective temperature scale for the Kepler Input Catalog. Astrophys. J. Suppl. 199, 30 (2012).

    ADS  Google Scholar 

  29. 29.

    Mathias, P. et al. Multi-site, multi-technique survey of γ Doradus candidates. I. Spectroscopic results for 59 stars. Astron. Astrophys. 417, 189–199 (2004).

    ADS  Google Scholar 

  30. 30.

    Maisonneuve, F. et al. Frequency analysis and pulsational mode identification of two γ Doradus stars: HD 40745 and HD 189631. Mon. Not. R. Astron. Soc. 415, 2977–2992 (2011).

    ADS  Google Scholar 

  31. 31.

    Davie, M. W. et al. Spectroscopic pulsational frequency and mode determination of the γ Doradus star HD 189631. Publ. Astron. Soc. Aust. 31, 25 (2014).

    ADS  Google Scholar 

  32. 32.

    Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. 529, L45–L48 (2000).

    ADS  Google Scholar 

  33. 33.

    Močnik, T., Hellier, C., Anderson, D. R. & Clark, B. J. M. Starspots on WASP-107 and pulsations of WASP-118. Mon. Not. R. Astron. Soc. 469, 1622–1629 (2017).

    ADS  Google Scholar 

  34. 34.

    Hay, K. L. et al. WASP-92b, WASP-93b and WASP-118b: three new transiting close-in giant planets. Mon. Not. R. Astron. Soc. 463, 3276–3289 (2016).

    ADS  Google Scholar 

  35. 35.

    von Essen, C. et al. Pulsation analysis and its impact on primary transit modeling in WASP-33. Astron. Astrophys. 561, A48 (2014).

    Google Scholar 

  36. 36.

    Herrero, E., Morales, J. C., Ribas, I. & Naves, R. WASP-33: the first δ Scuti exoplanet host star. Astron. Astrophys. 526, L10 (2011).

    ADS  Google Scholar 

  37. 37.

    de Wit, J. et al. Planet-induced stellar pulsations in HAT-P-2’s eccentric system. Astrophys. J. 836, L17 (2017).

    ADS  Google Scholar 

  38. 38.

    Welsh, W. F. et al. KOI-54: the Kepler discovery of tidally excited pulsations and brightenings in a highly eccentric binary. Astrophys. J. Suppl. 197, 4 (2011).

    ADS  Google Scholar 

  39. 39.

    Lagrange, A.-M., Desort, M., Galland, F., Udry, S. & Mayor, M. Extrasolar planets and brown dwarfs around A-F type stars. VI. High precision RV survey of early type dwarfs with HARPS. Astron. Astrophys. 495, 335–352 (2009).

    ADS  Google Scholar 

  40. 40.

    Borgniet, S., Lagrange, A.-M., Meunier, N. & Galland, F. Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample. Astron. Astrophys. 599, A57 (2017).

    Google Scholar 

  41. 41.

    Galland, F. et al. Extrasolar planets and brown dwarfs around A-F type stars. IV. A candidate brown dwarf around the A9V pulsating star HD 180777. Astron. Astrophys. 452, 709–714 (2006).

    ADS  Google Scholar 

  42. 42.

    Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E. & Collier Cameron, A. Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291, 658–682 (1997).

    ADS  Google Scholar 

  43. 43.

    Brunsden, E., Pollard, K. R., Wright, D. J., De Cat, P. & Cottrell, P. L. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations. Mon. Not. R. Astron. Soc. 475, 3813–3822 (2018).

    ADS  Google Scholar 

  44. 44.

    Lagrange, A., et al. Evidence for an additional planet in the β Pictoris system Nat. Astron. (2019).

  45. 45.

    Gong, Y.-X. & Ji, J. Formation of S-type planets in close binaries: scattering-induced tidal capture of circumbinary planets. Mon. Not. R. Astron. Soc. 478, 4565–4574 (2018).

    ADS  Google Scholar 

  46. 46.

    Masuda, K. Eccentric companions to Kepler-448b and Kepler-693b: clues to the formation of warm Jupiters. Astron. J. 154, 64 (2017).

    ADS  Google Scholar 

  47. 47.

    Van Eylen, V. et al. An asteroseismic view of the radius valley: stripped cores, not born rocky. Mon. Not. R. Astron. Soc. 479, 4786–4795 (2018).

    ADS  Google Scholar 

  48. 48.

    Zucker, S. & Mazeh, T. On the mass-period correlation of the extrasolar planets. Astrophys. J. Lett. 568, L113–L116 (2002).

    ADS  Google Scholar 

  49. 49.

    Gaudi, B. S., Seager, S. & Mallen-Ornelas, G. On the period distribution of close-in extrasolar giant planets. Astrophys. J. 623, 472–481 (2005).

    ADS  Google Scholar 

  50. 50.

    Southworth, J. Homogeneous studies of transiting extrasolar planets—I. Light-curve analyses. Mon. Not. R. Astron. Soc. 386, 1644–1666 (2008).

    ADS  Google Scholar 

  51. 51.

    Szabó, Gy. M. & Kiss, L. L. A short-period censor of sub-Jupiter mass exoplanets with low density. Astrophys. J. 727, L44 (2011).

    ADS  Google Scholar 

  52. 52.

    Mazeh, T., Holczer, T. & Faigler, S. Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. Astron. Astrophys. 589, A75 (2016).

    ADS  Google Scholar 

  53. 53.

    Gaudi, B. S. et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546, 514–518 (2017).

    ADS  Google Scholar 

  54. 54.

    Matsakos, T. & Königl, A. On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. Astrophys. J. Lett. 820, L8 (2016).

    ADS  Google Scholar 

  55. 55.

    Owen, J. E. & Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 479, 5012–5021 (2018).

    ADS  Google Scholar 

  56. 56.

    Rogers, L. A. Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015).

    ADS  Google Scholar 

  57. 57.

    Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    ADS  Google Scholar 

  58. 58.

    Wright, J. T. & Gaudi, B. S. in Planets, Stars and Stellar Systems Volume 3: Solar and Stellar Planetary Systems (eds Oswalt, T. D., French, L. M. & Kalas, P.) 489 (Springer, 2013).

  59. 59.

    DeVore, J., Rappaport, S., Sanchis-Ojeda, R., Hoffman, K. & Rowe, J. On the detection of non-transiting exoplanets with dusty tails. Mon. Not. R. Astron. Soc. 461, 2453–2460 (2016).

    ADS  Google Scholar 

  60. 60.

    Staab, D. Enshrouded Exoplaneary Systems. PhD thesis, Open University (2018).

  61. 61.

    Anderson, E. & Francis, C. XHIP: an Extended Hipparcos compilation. Astron. Lett. 38, 331–346 (2012).

    ADS  Google Scholar 

  62. 62.

    Wilson, O. C. Flux measurements at the centers of stellar H- and K-lines. Astrophys. J. 153, 221–234 (1968).

    ADS  Google Scholar 

  63. 63.

    Duncan, D. K. et al. Ca II H and K measurements made at Mount Wilson Observatory, 1966-1983. Astrophys. J. Suppl. 76, 383–430 (1991).

    ADS  Google Scholar 

  64. 64.

    Boro Saikia, S. et al. Chromospheric activity catalogue of 4454 cool stars. Questioning the active branch of stellar activity cycles. Astron. Astrophys. 616, A108 (2018).

    Google Scholar 

  65. 65.

    Wright, J. T. Do we know of any Maunder minimum stars? Astron. J. 129, 1776 (2005).

    ADS  Google Scholar 

  66. 66.

    Welsh, B. Y., Lallement, R., Vergely, J.-L. & Raimond, S. New 3D gas density maps of Na I and Ca II interstellar absorption within 300 pc. Astron. Astrophys. 510, A54 (2010).

    ADS  Google Scholar 

  67. 67.

    Dumusque, X., Udry, S., Lovis, C., Santos, N. C. & Monteiro, M. J. P. F. G. Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. Astron. Astrophys. 525, A140 (2011).

    ADS  Google Scholar 

  68. 68.

    Bouchy, F. & Queloz, D. HARPS DRS USER Manual (2003).

  69. 69.

    Queloz, D. et al. No planet for HD 166435. Astron. Astrophys. 379, 279–287 (2001).

    ADS  Google Scholar 

  70. 70.

    Anglada-Escudé, G. & Butler, R. P. The HARPS-TERRA Project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. 200, 15 (2012).

    ADS  Google Scholar 

  71. 71.

    Bourrier, V. & Hébrard, G. Detecting the spin-orbit misalignment of the super-Earth 55 Cancri e. Astron. Astrophys. 569, A65 (2014).

    ADS  Google Scholar 

  72. 72.

    Dolphin, A. E. The charge-transfer efficiency and calibration of WFPC2. Publ. Astron. Soc. Pac. 112, 1397–1410 (2000).

    ADS  Google Scholar 

  73. 73.

    Cosentino, R. et al. HARPS-N @ TNG, two year harvesting data: performances and results. Proc. SPIE 9147, 8 (2014).

    Google Scholar 

  74. 74.

    Berdiñas, Z. M. et al. High-cadence spectroscopy of M-dwarfs—II. Searching for stellar pulsations with HARPS. Mon. Not. R. Astron. Soc. 469, 4268–4282 (2017).

    ADS  Google Scholar 

  75. 75.

    Santerne, A. et al. SOPHIE velocimetry of Kepler transit candidates. VII. A false-positive rate of 35% for Kepler close-in giant candidates. Astron. Astrophys. 545, A76 (2012).

    Google Scholar 

  76. 76.

    Berdiñas, Z. M., Amado, P. J., Anglada-Escudé, G., Rodríguez-López, C. & Barnes, J. High-cadence spectroscopy of M dwarfs—I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B. Mon. Not. R. Astron. Soc. 459, 3551–3564 (2016).

    ADS  Google Scholar 

  77. 77.

    Anglada-Escudé, G. et al. No evidence for activity correlations in the radial velocities of Kapteyn’s star. Astrophys. J. 830, 74 (2016).

    ADS  Google Scholar 

  78. 78.

    Jackson, B., Greenberg, R. & Barnes, R. Tidal evolution of close-in extrasolar planets. Astrophys. J. 678, 1396–1406 (2008).

    ADS  Google Scholar 

  79. 79.

    Butler, R. P. et al. The LCES HIRES/Keck precision radial velocity exoplanet survey. Astron. J. 153, 208 (2017).

    ADS  Google Scholar 

Download references


This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 081.C-0148(A), 088.C-0662(A), 091.C-0866(C), 095.C-0799(A), 096.C-0876(A), 097.C-0390(B), 098.C-0269(A), 098.C0499(A), 098.C-0269(B), 099.C-0798(A) and 0100.C-0836(A). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013 and FP7/2013-2016) under grant agreements RG226604 and 312430 (OPTICON). These results were based on observations awarded by ESO, OPTICON and OHP using HARPS, HARPS-N and SOPHIE. This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France. We thank P. Arriagada for providing the archival observations from the MIKE spectrograph at the Las Campanas Observatory. D.S. was supported by an STFC studentship. C.A.H. and J.R.B. were supported by STFC Consolidated Grants ST/L000776/1 and ST/P000584/1; D.S., J.S.J. and J.C. were supported by STFC studentships. G.A.-E. was supported by STFC Consolidated Grant ST/P000592/1; J.S.J. acknowledges support by FONDECYT grant 1161218 and partial support from CONICYT project Basal AFB-170002. We thank several anonymous referees of DMPP papers for their constructive comments.

Author information




C.A.H. plans and leads all aspects of the DMPP collaboration, secured the funding and wrote the proposals and the paper. D.S. performed target selection and initial RV analyses and contributed to proposal writing. J.R.B. performed final RV analyses, contributed to proposal writing and cowrote the paper, with G.A.-E. providing software and expertise. L.F. contributed to the analysis and proposal writing. A.J.N. carried out analysis of the SuperWASP photometry data. J.S.J. provided expertise on stellar activity and the log RHK metric. C.A.H., D.S., J.R.B., J.S.J., J.P.J.D. and J.C. performed observations with HARPS and SOPHIE. All authors were given the opportunity to review the results and comment on the manuscript.

Corresponding author

Correspondence to Carole A. Haswell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Enrique Herrero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Tables 1–4, references and Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haswell, C.A., Staab, D., Barnes, J.R. et al. Dispersed Matter Planet Project discoveries of ablating planets orbiting nearby bright stars. Nat Astron 4, 408–418 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing