Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regenerative water sources on surfaces of airless bodies


Spectroscopic signatures of water and hydroxyl radicals have been observed on the surfaces of asteroids1,2,3. As the lifetime of the exposed water ice is on the order of 104 to 106 yr in the inner asteroid belt4, there must be mechanisms to replenish the water in the absence of recent ice-exposing processes. However, such regenerative water-ice sources on asteroids are still elusive. Here we perform laboratory experiments by exposing the samples of the Murchison meteorite to energetic electrons and laser irradiation, simulating, respectively, the secondary electrons generated by the solar wind as well as galactic cosmic ray particles and the micrometeorites impacting on an asteroid. We find that a single simulated space-weathering component is insufficient and both are needed to regenerate water at low temperatures at the desired timescales. We propose that two main mechanisms can be the source of surface water on asteroids: low-temperature oxidation of organics and mineral dehydration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Infrared absorption spectra of the Murchison meteorite.
Fig. 2: Temporal evolution and kinetic fits.
Fig. 3: Quadrupole mass spectrometry profiles recorded during TPD.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Code availability

The iSALE-2D hydrocode can be accessed at


  1. 1.

    Campins, H. et al. Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010).

    ADS  Google Scholar 

  2. 2.

    Rivkin, A. S., Howell, E. S., Emery, J. P. & Sunshine, J. Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed. Icarus 304, 74–82 (2017).

    ADS  Google Scholar 

  3. 3.

    Rivkin, A. S. & Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010).

    ADS  Google Scholar 

  4. 4.

    Schorghofer, N. The lifetime of ice on main belt asteroids. Astrophys. J. 682, 697–705 (2008).

    ADS  Google Scholar 

  5. 5.

    Gillis-Davis, J. J., Gasda, P. J., Bradley, J. P., Ishii, H. A. & Bussey, D. B. J. Laser space weathering of Allende (CV2) and Murchison (CM2) carbonaceous chondrites. In 46th Lunar and Planetary Science Conference 1607 (Lunar and Planetary Institute, 2015).

  6. 6.

    Matsuoka, M. et al. Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids. Icarus 254, 135–143 (2015).

    ADS  Google Scholar 

  7. 7.

    Lantz, C. et al. Ion irradiation of the Murchison meteorite: Visible to mid-infrared spectroscopic results. Astron. Astrophys. 577, A41 (2015).

    Google Scholar 

  8. 8.

    Thompson, M. S. et al. Coordinated analysis of an experimentally space weathered carbonaceous chondrite. In 50th Lunar and Planetary Science Conference 2045 (Lunar and Planetary Institute, 2019).

  9. 9.

    Coradini, A. et al. The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334, 492–494 (2011).

    ADS  Google Scholar 

  10. 10.

    Abplanalp, M. J. et al. A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules. Proc. Natl Acad. Sci. USA 113, 7727–7732 (2016).

    Google Scholar 

  11. 11.

    Brunetto, R., Loeffler, M. J., Nesvorný, D., Sasaki, S. & Strazzulla, G. in Asteroids IV 597–616 (Univ. Arizona Press, 2015).

  12. 12.

    Bouilloud, M. et al. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Mon. Not. R. Astron. Soc. 451, 2145–2160 (2015).

    ADS  Google Scholar 

  13. 13.

    Jamieson, C. S., Mebel, A. M. & Kaiser, R. I. Understanding the kinetics and dynamics of radiation-induced reaction pathways in carbon monoxide ice at 10 K. Astrophys. J. Suppl. Ser. 163, 184–206 (2006).

    ADS  Google Scholar 

  14. 14.

    Petkova, V. & Yaneva, V. Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J. Therm. Anal. Calorim. 99, 179–189 (2010).

    Google Scholar 

  15. 15.

    Smith, R. S., Huang, C., Wong, E. K. L. & Kay, B. D. The molecular volcano: abrupt CCl4 desorption driven by the crystallization of amorphous solid water. Phys. Rev. Lett. 79, 909–912 (1997).

    ADS  Google Scholar 

  16. 16.

    Collings, M. P. et al. A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133–1140 (2004).

    ADS  Google Scholar 

  17. 17.

    Schmitt-Kopplin, P. et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010).

    ADS  Google Scholar 

  18. 18.

    Palma, J., Echave, J. & Clary, D. C. The effect of the symmetric and asymmetric stretching vibrations on the CH3D + O(3P) → CH3 + OD reaction. Chem. Phys. Lett. 363, 529–533 (2002).

    ADS  Google Scholar 

  19. 19.

    Roskosz, M. et al. Kinetic D/H fractionation during hydration and dehydration of silicate glasses, melts and nominally anhydrous minerals. Geochim. Cosmochim. Acta 233, 14–32 (2018).

    ADS  Google Scholar 

  20. 20.

    Bennett, C. J., Ennis, C. P. & Kaiser, R. I. Experimental studies on the formation of D2O and D2O2 by implantation of energetic D+ ions into oxygen ices. Astrophys. J. 782, 63 (2014).

    ADS  Google Scholar 

  21. 21.

    Greenwood, J. P. et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 4, 79–82 (2011).

    Google Scholar 

  22. 22.

    Liu, Y. et al. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012).

    Google Scholar 

  23. 23.

    Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl Acad. Sci. USA 111, 1732–1735 (2014).

    ADS  Google Scholar 

  24. 24.

    Ichimura, A. S., Zent, A. P., Quinn, R. C., Sanchez, M. R. & Taylor, L. A. Hydroxyl (OH) production on airless planetary bodies: evidence from H+/D+ ion-beam experiments. Earth Planet. Sci. Lett. 345-348, 90–94 (2012).

    ADS  Google Scholar 

  25. 25.

    Managadze, G. G., Cherepin, V. T., Shkuratov, Y. G., Kolesnik, V. N. & Chumikov, A. E. Simulating OH/H2O formation by solar wind at the lunar surface. Icarus 215, 449–451 (2011).

    ADS  Google Scholar 

  26. 26.

    Burke, D. J. et al. Solar wind contribution to surficial lunar water: laboratory investigations. Icarus 211, 1082–1088 (2011).

    ADS  Google Scholar 

  27. 27.

    Zhu, C. et al. Untangling the formation and liberation of water in the lunar regolith. Proc. Natl Acad. Sci. USA 116, 11165–11170 (2019).

    ADS  Google Scholar 

  28. 28.

    Morlok, A., Koike, C., Tomioka, N., Mann, I. & Tomeoka, K. Mid-infrared spectra of the shocked Murchison CM chondrite: comparison with astronomical observations of dust in debris disks. Icarus 207, 45–53 (2010).

    ADS  Google Scholar 

  29. 29.

    McCausland, P. J. A., Samson, C. & McLeod, T. Determination of bulk density for small meteorite fragments via visible light 3D laser imaging. Meteorit. Planet. Sci. 46, 1097–1109 (2011).

    ADS  Google Scholar 

  30. 30.

    Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).

    ADS  Google Scholar 

  31. 31.

    Lantz, C. et al. Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus 285, 43–57 (2017).

    ADS  Google Scholar 

  32. 32.

    Cervantes-de la Cruz, K. E. et al. Experimental chondrules by melting samples of olivine, clays and carbon with a CO2 laser. Bol. Soc. Geol. Mex. 67, 401–412 (2015).

    Google Scholar 

  33. 33.

    Kissel, J. & Krueger, F. R. Ion formation by impact of fast dust particles and comparison with related techniques. Appl. Phys. A 42, 69–85 (1987).

    ADS  Google Scholar 

  34. 34.

    Hiroi, T. & Sasaki, S. Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples. Meteorit. Planet. Sci. 36, 1587–1596 (2001).

    ADS  Google Scholar 

  35. 35.

    Brunetto, R., Roush, T. L., Marra, A. C. & Orofino, V. Optical characterization of laser ablated silicates. Icarus 191, 381–393 (2007).

    ADS  Google Scholar 

  36. 36.

    Gillis-Davis, J. J. et al. Incremental laser space weathering of Allende reveals non-lunar like space weathering effects. Icarus 286, 1–14 (2017).

    ADS  Google Scholar 

  37. 37.

    Moroz, L. V., Fisenko, A. V., Semjonova, L. F., Pieters, C. M. & Korotaeva, N. N. Optical effects of regolith processes on S-asteroids as simulated by laser shots on ordinary chondrite and other mafic materials. Icarus 122, 366–382 (1996).

    ADS  Google Scholar 

  38. 38.

    Wasson, J. T., Pieters, C. M., Fisenko, A. V., Semjonova, L. F. & Warren, P. H. Simulation of space weathering of eucrites by laser impulse irradiation. In 29th Lunar and Planetary Science Conference 1940 (Lunar and Planetary Institute, 1998).

  39. 39.

    Basilevsky, A. T. et al. Simulation of impact melting effect on spectral properties of Martian surface: implications for polar deposits. Geochem. Int. 38, 390–403 (2000).

    Google Scholar 

  40. 40.

    Hiroi, T., Moroz, L. V., Shingareva, T. V., Basilevsky, A. T. & Pieters, C. M. Effects of microsecond pulse laser irradiation on Vis-NIR reflectance spectrum of carbonaceous chondrite simulant: implications for martian moons and primitive asteroids. In 34th Lunar and Planetary Science Conference 1324 (Lunar and Planetary Institute, 2003).

  41. 41.

    Moroz, L. V. et al. Reflectance spectra of CM2 chondrite Mighei irradiated with pulsed laser and implications for low-albedo asteroids and Martian moons. In 35th Lunar and Planetary Science Conference 1279 (Lunar and Planetary Institute, 2004).

  42. 42.

    Shingareva, T. V., Basilevsky, A. T., Fisenko, A. V., Semjonova, L. F. & Korotaeva, N. N. Mineralogy and petrology of laser irradiated carbonaceous chondrite Mighei. In 35th Lunar and Planetary Science Conference 1137 (Lunar and Planetary Institute, 2004).

  43. 43.

    Moroz, L. V. et al. Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1. Icarus 202, 336–353 (2009).

    ADS  Google Scholar 

  44. 44.

    Hudson, R. L., Gerakines, P. A. & Moore, M. H. Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. Icarus 243, 148–157 (2014).

    ADS  Google Scholar 

  45. 45.

    Harris, T. D., Lee, D. H., Blumberg, M. Q. & Arumainayagam, C. R. Electron-induced reactions in methanol ultrathin films studied by temperature-programmed desorption: a useful method to study radiation chemistry. J. Phys. Chem. 99, 9530–9535 (1995).

    Google Scholar 

  46. 46.

    Boyer, M. C. et al. Dynamics of dissociative electron-molecule interactions in condensed methanol. J. Phys. Chem. C 118, 22592–22600 (2014).

    Google Scholar 

  47. 47.

    Boamah, M. D. et al. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules. Faraday Discuss. 168, 249–266 (2014).

    ADS  Google Scholar 

  48. 48.

    Turner, A. M. et al. An interstellar synthesis of phosphorus oxoacids. Nat. Commun. 9, 3851 (2018).

    ADS  Google Scholar 

  49. 49.

    Shingledecker, C. N. & Herbst, E. A general method for the inclusion of radiation chemistry in astrochemical models. Phys. Chem. Chem. Phys. 20, 5359–5367 (2018).

    Google Scholar 

  50. 50.

    Bennett, C. J., Jamieson, C. S., Osamura, Y. & Kaiser, R. I. A combined experimental and computational investigation on the synthesis of acetaldehyde [CH3CHO (X1A’)] in interstellar ices. Astrophys. J. 624, 1097–1115 (2005).

    ADS  Google Scholar 

  51. 51.

    Arumainayagam, C. R., Lee, H.-L., Nelson, R. B., Haines, D. R. & Gunawardane, R. P. Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1–44 (2010).

    ADS  Google Scholar 

  52. 52.

    Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).

    ADS  Google Scholar 

  53. 53.

    Boyer, M. C., Rivas, N., Tran, A. A., Verish, C. A. & Arumainayagam, C. R. The role of low-energy (≤20eV) electrons in astrochemistry. Surf. Sci. 652, 26–32 (2016).

    ADS  Google Scholar 

  54. 54.

    Strazzulla, G. & Johnson, R. E. Irradiation effects on comets and cometary debris. In International Astronomical Union Colloquium 243–275 (Cambridge Univ. Press, 1989).

  55. 55.

    Wasson, J. T. et al. Simulation of space weathering of HED meteorites by laser impulse irradiation. In 28th Lunar and Planetary Science Conference 1730 (Lunar and Planetary Institute, 1997).

  56. 56.

    Chapman, C. R., Paolicchi, P., Zappala, V., Binzel, R. P. & Bell, J. F. in Asteroids II 386–415 (Univ. Arizona Press, 1989).

  57. 57.

    Lucey, P. et al. Understanding the lunar surface and space-Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006).

    Google Scholar 

  58. 58.

    Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    ADS  Google Scholar 

  59. 59.

    Liou, J.-C. & Zook, H. A. Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. Astron. J. 118, 580–590 (1999).

    ADS  Google Scholar 

  60. 60.

    Grün, E., Zook, H. A., Fechtig, H. & Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

    ADS  Google Scholar 

  61. 61.

    Roush, T. L. Estimated optical constants of the Tagish Lake meteorite. Meteorit. Planet. Sci. 38, 419–426 (2003).

    ADS  Google Scholar 

  62. 62.

    Turner, A. M. et al. A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices. Phys. Chem. Chem. Phys. 17, 27281–27291 (2015).

    Google Scholar 

  63. 63.

    Gerakines, P. A., Bray, J. J., Davis, A. & Richey, C. R. The strengths of near-infrared absorption features relevant to interstellar and planetary ices. Astrophys. J. 620, 1140–1150 (2005).

    ADS  Google Scholar 

  64. 64.

    Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1996).

  65. 65.

    Dominguez, G. Time evolution and temperatures of hypervelocity impact-generated tracks in aerogel. Meteorit. Planet. Sci. 44, 1431–1443 (2009).

    ADS  Google Scholar 

  66. 66.

    Zel’Dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Courier Corporation, 2012).

  67. 67.

    Kearsley, A. T., Burchell, M. J., Hörz, F., Cole, M. J. & Schwandt, C. S. Laboratory simulation of impacts on aluminum foils of the Stardust spacecraft: Calibration of dust particle size from comet Wild-2. Meteorit. Planet. Sci. 41, 167–180 (2006).

    ADS  Google Scholar 

  68. 68.

    Prieur, N. C., Rolf, T., Wnnemann, K. & Werner, S. C. Formation of simple impact craters in layered targets: implications for lunar crater morphology and regolith thickness. J. Geophys. Res. Planets 123, 1555–1578 (2018).

    ADS  Google Scholar 

Download references


This work was supported by NASA under grant NNX16AO79G, awarded to R.I.K. and the University of Hawai’i at Mānoa. We also acknowledge the W. M. Keck Foundation for funding the construction of the surface-science machine. P. Crandall (University of Hawai’i at Mānoa, Department of Chemistry) provided advice to operate the charged-particle source and the laser. J.P. Bradley (University of Hawai’i at Mānoa, Hawai’i Institute of Geophysics and Planetology) provided advice on the thermal effects of the laser. G.D. acknowledges support by NSF grant 1616992.

Author information




R.I.K and J.J.G.-D designed the experiments. S.G., C.Z., M.J.A. and R.F. performed the experiments. G.D. and K.M. carried out the theoretical analyses. R.I.K., C.Z. and J.J.G.-D. wrote the manuscript, which was read, revised and approved by all co-authors.

Corresponding authors

Correspondence to Jeffrey J. Gillis-Davis or Ralf I. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Michelle Thompson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Góbi, S., Abplanalp, M.J. et al. Regenerative water sources on surfaces of airless bodies. Nat Astron 4, 45–52 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing