Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An X-ray detection of star formation in a highly magnified giant arc


In the past decade, our understanding of how stars and galaxies formed during the first 5 billion years after the Big Bang has been revolutionized by observations that leverage gravitational lensing by intervening masses, which act as natural cosmic telescopes to magnify background sources. Previous studies have harnessed this effect to probe the distant Universe at ultraviolet, optical, infrared and millimetre wavelengths1,2,3,4,5,6. However, strong-lensing studies of young, star-forming galaxies have never extended into X-ray wavelengths, which uniquely trace high-energy phenomena. Here, we report an X-ray detection of star formation in a highly magnified, strongly lensed galaxy. This lensed galaxy, seen during the first third of the history of the Universe, is a low-mass, low-metallicity starburst with elevated X-ray emission, and is a likely analogue to the first generation of galaxies. Our measurements yield insight into the role that X-ray emission from stellar populations in the first generation of galaxies may play in reionizing the Universe. This observation paves the way for future strong-lensing-assisted X-ray studies of distant galaxies reaching orders of magnitude below the detection limits of current deep fields, and previews the depths that will be attainable with future X-ray observatories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: False-colour and X-ray images of the giant arc in SPT-CLJ2344-4243.
Fig. 2: Samples of star-forming galaxies with measured X-ray luminosities.
Fig. 3: Relationship between the X-ray luminosity and the SFR.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. This paper makes use of Chandra data from observation IDs 13401, 16135, 16545, 19581, 19582, 19583, 20630, 20631, 20634, 20635, 20636 and 20797. All raw Chandra data are available for download from the Chandra X-ray Center ( The Hubble data used in this work is available at the Mikulski Archive for Space Telescopes (MAST; under proposal ID 15315. The full raw and reduced FIRE spectroscopy used in this work is freely available upon request. The reduced spectrum is publicly available for download at the Harvard Dataverse (

Code availability

The data reduction pipelines used in this work are all publicly available. Chandra data were reduced using the CIAO package (, Hubble data were reduced using Drizzlepac (, and FIRE data were reduced using the FIREHOSE package ( The modelling of the foreground galaxy cluster potential was done using the publicly available Lenstool code ( Analysis of the FIRE spectra was performed using the IDL Astronomy User’s Library (


  1. 1.

    Coe, D. et al. CLASH: three strongly lensed images of a candidate z ~ 11 galaxy. Astrophys. J. 762, 32 (2013).

    ADS  Google Scholar 

  2. 2.

    Vieira, J. D. et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 495, 344–347 (2013).

    ADS  Google Scholar 

  3. 3.

    Ishigaki, M. et al. Hubble Frontier Fields first complete cluster data: faint galaxies at z ~ 5–10 for UV luminosity functions and cosmic reionization. Astrophys. J. 799, 12 (2015).

    ADS  Google Scholar 

  4. 4.

    Livermore, R. C., Finkelstein, S. L. & Lotz, J. M. Directly observing the galaxies likely responsible for reionization. Astrophys. J. 835, 113 (2017).

    ADS  Google Scholar 

  5. 5.

    Laporte, N. et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).

    ADS  Google Scholar 

  6. 6.

    Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    ADS  Google Scholar 

  7. 7.

    Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Preprint at (2018).

  8. 8.

    Carlstrom, J. E. et al. The 10 meter South Pole Telescope. Publ. Astron. Soc. Pac. 123, 568–581 (2011).

    ADS  Google Scholar 

  9. 9.

    McDonald, M. et al. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 488, 349–352 (2012).

    ADS  Google Scholar 

  10. 10.

    Baldwin, A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    ADS  Google Scholar 

  11. 11.

    Kewley, L. J. et al. The cosmic BPT diagram: confronting theory with observations. Astrophys. J. Lett. 774, L10 (2013).

    ADS  Google Scholar 

  12. 12.

    Fragos, T. et al. X-ray binary evolution across cosmic time. Astrophys. J. 764, 41 (2013).

    ADS  Google Scholar 

  13. 13.

    Colbert, E. J. M., Heckman, T. M., Ptak, A. F., Strickland, D. K. & Weaver, K. A. Old and young X-ray point source populations in nearby galaxies. Astrophys. J. 602, 231–248 (2004).

    ADS  Google Scholar 

  14. 14.

    Basu-Zych, A. R. et al. Evidence for elevated X-ray emission in local Lyman break galaxy analogs. Astrophys. J. 774, 152 (2013).

    ADS  Google Scholar 

  15. 15.

    Brorby, M., Kaaret, P., Prestwich, A. & Mirabel, I. F. Enhanced X-ray emission from Lyman break analogues and a possible L X-SFR-metallicity plane. Mon. Not. R. Astron. Soc. 457, 4081–4088 (2016).

    ADS  Google Scholar 

  16. 16.

    Kaaret, P., Brorby, M., Casella, L. & Prestwich, A. H. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247–232. Mon. Not. R. Astron. Soc. 471, 4234–4238 (2017).

    ADS  Google Scholar 

  17. 17.

    Svoboda, J., Douna, V., Orlitová, I. & Ehle, M. Green Peas in X-rays. Astrophys. J. 880, 144–159 (2019).

    ADS  Google Scholar 

  18. 18.

    Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 ms Chandra Deep Field-South. Astrophys. J. 825, 7 (2016).

    ADS  Google Scholar 

  19. 19.

    Xue, Y. Q. et al. The 2 ms Chandra Deep Field-North Survey and the 250 ks extended Chandra Deep Field-South Survey: improved point-source catalogs. Astrophys. J. Suppl. 224, 15 (2016).

    ADS  Google Scholar 

  20. 20.

    Luo, B. et al. The Chandra Deep Field-South Survey: 7 ms source catalogs. Astrophys. J. Suppl. 228, 2 (2017).

    ADS  Google Scholar 

  21. 21.

    Basu-Zych, A. R. et al. The X-ray star formation story as told by Lyman break galaxies in the 4 ms CDF-S. Astrophys. J. 762, 45 (2013).

    ADS  Google Scholar 

  22. 22.

    Aird, J., Coil, A. L. & Georgakakis, A. X-rays across the galaxy population—I. Tracing the main sequence of star formation. Mon. Not. R. Astron. Soc. 465, 3390–3415 (2017).

    ADS  Google Scholar 

  23. 23.

    Mineo, S., Gilfanov, M. & Sunyaev, R. X-ray emission from star-forming galaxies—I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 419, 2095–2115 (2012).

    ADS  Google Scholar 

  24. 24.

    Ranalli, P., Comastri, A. & Setti, G. The 2–10 keV luminosity as a star formation rate indicator. Astron. Astrophys. 399, 39–50 (2003).

    ADS  Google Scholar 

  25. 25.

    Prestwich, A. H. et al. Ultra-luminous X-ray sources in HARO II and the role of X-ray binaries in feedback in Lyα emitting galaxies. Astrophys. J. 812, 166 (2015).

    ADS  Google Scholar 

  26. 26.

    Mineo, S., Gilfanov, M., Lehmer, B. D., Morrison, G. E. & Sunyaev, R. X-ray emission from star-forming galaxies—III. Calibration of the L X-SFR relation up to redshift z ~ 1.3. Mon. Not. R. Astron. Soc. 437, 1698–1707 (2014).

    ADS  Google Scholar 

  27. 27.

    Basu-Zych, A. R. et al. Exploring the overabundance of ULXs in metal- and dust-poor local Lyman break analogs. Astrophys. J. 818, 140 (2016).

    ADS  Google Scholar 

  28. 28.

    Mesinger, A., Ferrara, A. & Spiegel, D. S. Signatures of X-rays in the early Universe. Mon. Not. R. Astron. Soc. 431, 621–637 (2013).

    ADS  Google Scholar 

  29. 29.

    Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014).

    ADS  Google Scholar 

  30. 30.

    Das, A., Mesinger, A., Pallottini, A., Ferrara, A. & Wise, J. H. High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption. Mon. Not. R. Astron. Soc. 469, 1166–1174 (2017).

    ADS  Google Scholar 

  31. 31.

    McDonald, M. et al. The growth of cool cores and evolution of cooling properties in a sample of 83 galaxy clusters at 0.3 < z < 1.2 selected from the SPT-SZ Survey. Astrophys. J. 774, 23 (2013).

    ADS  Google Scholar 

  32. 32.

    McDonald, M. et al. Deep Chandra, HST-COS, and Megacam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. Astrophys. J. 811, 111 (2015).

    ADS  Google Scholar 

  33. 33.

    Ranalli, P. et al. X-ray properties of radio-selected star forming galaxies in the Chandra-COSMOS survey. Astron. Astrophys. 542, A16 (2012).

    Google Scholar 

  34. 34.

    Simcoe, R. A. et al. FIRE: a near-infrared cross-dispersed echellette spectrometer for the Magellan telescopes. Proc. SPIE 7014, 70140U (2008).

    Google Scholar 

  35. 35.

    Vacca, W. D., Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pac. 115, 389–409 (2003).

    ADS  Google Scholar 

  36. 36.

    Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8-5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362–376 (2004).

    ADS  Google Scholar 

  37. 37.

    Bayliss, M. B. Broadband photometry of 105 giant arcs: redshift constraints and implications for giant arc statistics. Astrophys. J. 744, 156 (2012).

    ADS  Google Scholar 

  38. 38.

    Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004).

    ADS  Google Scholar 

  39. 39.

    Bleem, L. E. et al. Galaxy clusters discovered via the Sunyaev-Zel’dovich effect in the 2500-square-degree SPT-SZ survey. Astrophys. J. Suppl. 216, 27 (2015).

    ADS  Google Scholar 

  40. 40.

    Ashby, M. L. N. et al. The Spitzer Deep, Wide-Field Survey. Astrophys. J. 701, 428–453 (2009).

    ADS  Google Scholar 

  41. 41.

    Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).

    ADS  Google Scholar 

  42. 42.

    Bayliss, M. B. et al. SPT-GMOS: a Gemini/GMOS-South spectroscopic survey of galaxy clusters in the SPT-SZ survey. Astrophys. J. Suppl. 227, 3 (2016).

    ADS  Google Scholar 

  43. 43.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).

    ADS  Google Scholar 

  44. 44.

    Gladders, M. D. & Yee, H. K. C. A new method for galaxy cluster detection. I. The algorithm. Astron. J. 120, 2148–2162 (2000).

    ADS  Google Scholar 

  45. 45.

    Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110 = 6459. I. Lens modeling and source reconstruction. Astrophys. J. 843, 78 (2017).

    ADS  Google Scholar 

  46. 46.

    Sharma, S. et al. High-resolution spatial analysis of a z ~ 2 lensed galaxy using adaptive coadded source-plane reconstruction. Mon. Not. R. Astron. Soc. 481, 1427–1440 (2018).

    ADS  Google Scholar 

  47. 47.

    Calzetti, D. The dust opacity of star-forming galaxies. Publ. Astron. Soc. Pac. 113, 1449–1485 (2001).

    ADS  Google Scholar 

  48. 48.

    Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, 1989).

  49. 49.

    Denicoló, G., Terlevich, R. & Terlevich, E. New light on the search for low-metallicity galaxies—I. The N2 calibrator. Mon. Not. R. Astron. Soc. 330, 69–74 (2002).

    ADS  Google Scholar 

  50. 50.

    Pettini, M. & Pagel, B. E. J. [O iii]/[N ii] as an abundance indicator at high redshift. Mon. Not. R. Astron. Soc. 348, L59–L63 (2004).

    ADS  Google Scholar 

  51. 51.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  52. 52.

    Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    ADS  Google Scholar 

  53. 53.

    Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999).

    ADS  Google Scholar 

  54. 54.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    ADS  Google Scholar 

  55. 55.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Google Scholar 

  56. 56.

    Bell, E. F. & de Jong, R. S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550, 212–229 (2001).

    ADS  Google Scholar 

  57. 57.

    Thomas, D. et al. Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies. Mon. Not. R. Astron. Soc. 431, 1383–1397 (2013).

    ADS  Google Scholar 

  58. 58.

    Terashima, Y., Iyomoto, N., Ho, L. C. & Ptak, A. F. X-Ray properties of LINERs and low-luminosity Seyfert galaxies observed with ASCA. I. Observations and results. Astrophys. J. Suppl. 139, 1–36 (2002).

    ADS  Google Scholar 

  59. 59.

    Jones, M. L. et al. The intrinsic Eddington ratio distribution of active galactic nuclei in star-forming galaxies from the Sloan Digital Sky Survey. Astrophys. J. 826, 12 (2016).

    ADS  Google Scholar 

  60. 60.

    She, R., Ho, L. C. & Feng, H. Chandra survey of nearby galaxies: a significant population of candidate central black holes in late-type galaxies. Astrophys. J. 842, 131 (2017).

    ADS  Google Scholar 

  61. 61.

    Wang, J. X., Malhotra, S., Rhoads, J. E. & Norman, C. A. Identifying high-redshift active galactic nuclei using X-ray hardness. Astrophys. J. 612, L109–L112 (2004).

    ADS  Google Scholar 

  62. 62.

    Kong, A. K. H., Yang, Y. J., Hsieh, P.-Y., Mak, D. S. Y. & Pun, C. S. J. The ultraluminous X-ray sources near the center of M82. Astrophys. J. 671, 349–357 (2007).

    ADS  Google Scholar 

  63. 63.

    Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize2–10. Nature 470, 66–68 (2011).

    ADS  Google Scholar 

  64. 64.

    Reines, A. E. et al. A candidate massive black hole in the low-metallicity dwarf galaxy pair Mrk 709. Astrophys. J. Lett. 787, L30 (2014).

    ADS  Google Scholar 

  65. 65.

    Reines, A. E. et al. Deep Chandra observations of the compact starburst galaxy Henize 2–10: X-rays from the massive black hole. Astrophys. J. Lett. 830, L35 (2016).

    ADS  Google Scholar 

Download references


Support for this work was provided by NASA through Chandra award number GO7-18124, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. Additional support was provided by NASA through the Space Telescope Science Institute (HST-GO-15315), which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

Author information




M.B.B. performed the analysis of the FIRE spectroscopy, Chandra, Hubble and Spitzer data, and wrote the article text with input and contributions from all authors. M.M. acquired the Chandra and Hubble data. M.B.B. and M.M. reduced the Chandra X-ray data. M.B.B. reduced the FIRE NIR spectroscopy, which was obtained from observations performed by M.B.B. and M.D.G. M.B. acquired the Spitzer data. M.F. reduced the Hubble data. K.S. computed the strong lensing model of the foreground cluster lens and produced the reconstruction of the galaxy in the source plane. The authors are ordered in two alphabetical tiers after M.F.

Corresponding author

Correspondence to M. B. Bayliss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Jean-Paul Kneib and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1 and 2 and refs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayliss, M.B., McDonald, M., Sharon, K. et al. An X-ray detection of star formation in a highly magnified giant arc. Nat Astron 4, 159–166 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing