Evidence for an additional planet in the β Pictoris system

Abstract

With its imaged debris disk of dust, its evaporating exocomets, and an imaged giant planet, the young (~23 Myr) β Pictoris system is a unique proxy for detailed studies of planet formation processes as well as planet–disk interactions. Here, we study ten years of European Southern Observatory/High Accuracy Radial Velocity Planet Searcher (HARPS) high-resolution spectroscopic data of β Pictoris. After removing the radial velocity (RV) signals arising from the δ Scuti pulsations of the star, a ~1,200-d periodic signal remains, which, within our current knowledge, we can only attribute to a second planet in the system. The β Pic c mass is about nine times the mass of Jupiter; it orbits at ~2.7 au on an eccentric (e ~ 0.24) orbit. More RV data are needed to obtain more precise estimates of the properties of β Pic c. The current modelling of the planet’s properties and the dynamic of the whole system has to be reinvestigated in light of this detection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: RV variations of β Pictoris and generalized Lomb–Scargle periodograms.
Fig. 2: Pulsation-corrected RV data with corresponding generalized Lomb–Scargle periodogram.
Fig. 3: Keplerian fits of the pulsation-corrected RV data.
Fig. 4: Properties of the additional planet.

Data availability

The HARPS spectra are available in the ESO archive, and the measured RV data are given in Supplementary Table 1.

Code availability

The codes used for this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Baruteau, C., Bai, X., Mordasini, C. & Mollière, P. Formation, orbital and internal evolutions of young planetary systems. Space Sci. Rev. 205, 77–124 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Smith, B. A. & Terrile, R. J. A circumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).

    ADS  Article  Google Scholar 

  3. 3.

    Augereau, J. C., Nelson, R. P., Lagrange, A.-M., Papaloizou, J. C. B. & Mouillet, D. Dynamical modeling of large-scale asymmetries in the β Pictoris dust disk. Astron. Astrophys. 370, 447–455 (2001).

    ADS  Article  Google Scholar 

  4. 4.

    Dent, W. et al. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk. Science 383, 1490–1492 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Kiefer, F. et al. Two families of exocomets in the β Pictoris system. Nature 514, 462–464 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Lagrange, A.-M. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L′-band imaging. Astron. Astrophys. 493, L21–L25 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 328, 57–59 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Mouillet, D., Larwood, J. D., Papaloizou, J. C. B. & Lagrange, A.-M. A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc. Mon. Not. R. Astron. Soc. 292, 896–904 (1997).

    ADS  Article  Google Scholar 

  9. 9.

    Nesvold, E., Kuchner, M. J. & SMACK, A. Model of colliding planetesimals in the β Pictoris debris disk. Astrophys. J. 798, 83–100 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Beust, H. & Morbidelli, A. Falling evaporating bodies as a clue to outline the structure of the β Pictoris young planetary system. Icarus 143, 170–188 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    Telesco, C. M. et al. Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk. Nature 433, 133–136 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Okamoto, Y. K. et al. An early extrasolar planetary system revealed by planetesimal belts in β Pictoris. Nature 431, 660–662 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Wahhaj, Z. et al. The inner rings of β Pictoris. Astrophys. J. 584, L27–L32 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    Lagage, P. O. & Pantin, E. Dust depletion in the inner disk of β Pictoris as a possible indicator of planets. Nature 369, 628–630 (1994).

    ADS  Article  Google Scholar 

  15. 15.

    Lagrange, A.-M. et al. Full exploration of the giant planet population around β Pictoris. Astron. Astrophys. 612, 108–112 (2018).

    Article  Google Scholar 

  16. 16.

    Lagrange, A.-M. et al. Constraints on planets around β Pic with Harps radial velocity data. Astron. Astrophys. 542, A18–A23 (2012).

    Article  Google Scholar 

  17. 17.

    Bonnefoy, M. et al. Physical and orbital properties of β Pictoris b. Astron. Astrophys. 567, L9–L14 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Koen, C. δ Scuti pulsations in β Pictoris. Mon. Not. R. Astron. Soc. 341, 1385–1387 (2003).

    ADS  Article  Google Scholar 

  19. 19.

    Koen, C. et al. Pulsations in β Pictoris. Mon. Not. R. Astron. Soc. 344, 1250–1256 (2003).

    ADS  Article  Google Scholar 

  20. 20.

    Mekarnia, D. et al. The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica. Astron. Astrophys. 608, L6–L10 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R. & Gerbaldi, M. β Pictoris revisited by Hipparcos. Star properties. Astron. Astrophys. 320, L29–L32 (1997).

    ADS  Google Scholar 

  22. 22.

    Lagrange, A.-M. et al. β Pictoris b post conjunction detection with VLT/SPHERE. Astron. Astrophys. 621, L8–L14 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Snellen, I. A. G. & Brown, A. G. A. The mass of the young planet β Pictoris b through the astrometric motion of its host star. Nat. Astron. 2, 883–886 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Dupuy, T., Brandt, T. D., Kratter, K. M. & Bowler, B. P. A model-independent mass and moderate eccentricity for β Pic b. Astrophys. J. 871, L4–L9 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Kennedy, G. M. & Kenyon, S. J. Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    Lagrange, A.-M. et al. The position of β Pictoris b position relative to the debris disk. Astron. Astrophys. 546, 38–51 (2012).

    Article  Google Scholar 

  29. 29.

    Fortney, J. J., Marley, M. S., Saumon, D. & Lodders, K. Synthetic spectra and colors of young giant planet atmospheres: effects of initial conditions and atmospheric metallicity. Astrophys. J. 683, 1104–1116 (2008).

    ADS  Article  Google Scholar 

  30. 30.

    Galland, F. et al. Extrasolar planets and brown dwarfs around A–F type stars. I. Performances of radial velocity measurements, first analyses of variations. Astron. Astrophys. 443, 337–345 (2005).

    ADS  Article  Google Scholar 

  31. 31.

    Anglada-Escudé, G. & Butler, P. R. The HARPS-TERRA Project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. 200, 15–34 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Locurto, G. et al. HARPS gets new fibres after 12 years of operation. Messenger 162, 9–15 (2015).

    ADS  Google Scholar 

  33. 33.

    Bradley, P. A. et al. Analysis of γ Doradus and δ Scuti stars observed by Kepler. Astron. J. 149, 68–81 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Beust, H. Symplectic integration of hierarchical stellar systems. Astron. Astrophys. 400, 1129–1144 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Beust, H. & Morbidelli, A. Mean-motion resonances as a source for infalling comets toward β Pictoris. Icarus 120, 358–370 (1996).

    ADS  Article  Google Scholar 

  36. 36.

    Thebault, P. & Beust, H. Falling evaporating bodies in the β Pictoris system. Resonance refilling and long term duration of the phenomenon. Astron. Astrophys. 376, 621–640 (2001).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the Agence Nationale de la Recherche (ANR-14-CE33–0018) and the French Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56). A.Z. was supported by CONICYT grant no. 2117053. A.-M.L. thanks F. Forbes, K. Zwincks, A. Lecavelier, J. Pepper, P. Kervella and J. C. B. Papaloizou for discussions. T.G., D.M., L.A. and F.-X.S. acknowledge support from Idex UCAJEDI (ANR-15-IDEX-01) and IPEV.

Author information

Affiliations

Authors

Contributions

A.-M.L. led the monitoring of the variations, the data reduction, the analysis and interpretation of the data, and the paper writing. N.M., P.R., M.K. and F.G. participated to the data fitting and analysis. E.C., E.M., L.B. and F.-X.S. brought their expertise in stellar variability. H.B. provided analysis of the dynamical stability of the system. T.G., D.M. and L.A. brought expertise on β Pictoris photometric variability. P.A.W. and F.K. brought expertise on β Pictoris spectroscopic variability. M.B., S.B., A.G., J.L.-B., B.P., D.P.I., L.R. and A.Z.S. participated in the observations.

Corresponding author

Correspondence to A.-M. Lagrange.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagrange, A., Meunier, N., Rubini, P. et al. Evidence for an additional planet in the β Pictoris system. Nat Astron 3, 1135–1142 (2019). https://doi.org/10.1038/s41550-019-0857-1

Download citation

Further reading