New regimes in the observation of core-collapse supernovae

Abstract

Core-collapse supernovae (CCSNe) mark the deaths of stars more massive than about eight times the mass of the Sun and are intrinsically the most common kind of catastrophic cosmic explosions. They can teach us about many important physical processes, such as nucleosynthesis and stellar evolution, and thus they have been studied extensively for decades. However, many crucial questions remain unanswered, including the most basic ones regarding which kinds of massive stars achieve which kind of explosions, and how. Observationally, this is related to the open puzzles of whether CCSNe can be divided into distinct types or whether they are drawn from a population with a continuous set of properties, and what progenitor characteristics drive the diversity of observed explosions. Recent developments in wide-field surveys and rapid-response follow-up facilities are helping us answer these questions by providing new tools, such as: (1) large statistical samples that enable population studies of the most common SNe and reveal rare (but extremely informative) events that question our standard understanding of the explosion physics involved; and (2) observations of early SNe emission taken shortly after explosion, which carry signatures of the progenitor structure and mass-loss history. Future facilities will increase our observational capabilities and allow us to answer many open questions related to these extremely energetic phenomena of the Universe.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spectral classification of CCSNe.
Fig. 2: Photometric diversity of CCSNe.
Fig. 3: A new phase-space.
Fig. 4: A high-cadence look at CCSN light curves.
Fig. 5: ‘Flash spectroscopy’ of infant SNe.

References

  1. 1.

    Alsabti, A. W. & Murdin, P. Handbook of Supernovae (Springer, 2016).

  2. 2.

    Minkowski, R. Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224–225 (1941).

  3. 3.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

  4. 4.

    Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1–43 (Springer, 2016).

  5. 5.

    Barbon, R., Ciatti, F. & Rosino, L. Photometric properties of type II supernovae. Astron. Astrophys. 72, 287–292 (1979).

  6. 6.

    Schlegel, E. M. On the early spectroscopic distinction of type II supernovae. Astron. J. 111, 1660–1667 (1996).

  7. 7.

    Gutiérrez, C. P. et al. Hα spectral diversity of type II supernovae: correlations with photometric properties. Astrophys. J. Lett. 786, L15 (2014).

  8. 8.

    Gutiérrez, C. P. et al. Type II supernova spectral diversity. II. Spectroscopic and photometric correlations. Astrophys. J. 850, 90 (2017).

  9. 9.

    Blanco, V. M. et al. Supernova 1987A in the Large Magellanic Cloud — initial observations at Cerro Tololo. Astrophys. J. 320, 589–596 (1987).

  10. 10.

    Hamuy, M., Suntzeff, N. B., Gonzalez, R. & Martin, G. SN 1987A in the LMC — UBVRI photometry at Cerro Tololo. Astron. J. 95, 63–83 (1988).

  11. 11.

    Chevalier, R. A. The interaction of the radiation from a type II supernova with a circumstellar shell. Astrophys. J. 251, 259–265 (1981).

  12. 12.

    Fransson, C. X-ray and UV-emission from supernova shock waves in stellar winds. Astron. Astrophys. 111, 140–150 (1982).

  13. 13.

    Schlegel, E. M. A new subclass of type II supernovae? Mon. Not. R. Astron. Soc. 244, 269–271 (1990).

  14. 14.

    Clocchiatti, A. et al. A study of SN 1992H in NGC 5377. Astron. J. 111, 1286–1303 (1996).

  15. 15.

    Patat, F., Barbon, R., Cappellaro, E. & Turatto, M. Light curves of type II supernovae. 2: the analysis. Astron. Astrophys. 282, 731–741 (1994).

  16. 16.

    Arcavi, I. et al. Caltech Core-Collapse Project (CCCP) observations of type II supernovae: evidence for three distinct photometric subtypes. Astrophys. J. Lett. 756, L30 (2012).

  17. 17.

    Faran, T. et al. A sample of type II-L supernovae. Mon. Not. R. Astron. Soc. 445, 554–569 (2014).

  18. 18.

    Anderson, J. P. et al. Characterizing the V-band light-curves of hydrogen-rich type II supernovae. Astrophys. J. 786, 67 (2014).

  19. 19.

    Sanders, N. E. et al. Toward characterization of the type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1. Astrophys. J. 799, 208 (2015).

  20. 20.

    Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

  21. 21.

    Galbany, L. et al. UBVRIz light curves of 51 type II supernovae. Astron. J. 151, 33 (2016).

  22. 22.

    Rubin, A. et al. Type II supernova energetics and comparison of light curves to shock-cooling models. Astrophys. J. 820, 33 (2016).

  23. 23.

    Valenti, S. et al. Supernova 2013by: a type IIL supernova with a IIP-like light-curve drop. Mon. Not. R. Astron. Soc. 448, 2608–2616 (2015).

  24. 24.

    Smartt, S. J. Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Publ. Astron. Soc. Aust. 32, e016 (2015).

  25. 25.

    Elias-Rosa, N. et al. The massive progenitor of the type II-linear supernova 2009kr. Astrophys. J. Lett. 714, L254–L259 (2010).

  26. 26.

    Jha, S. W., Maguire, K. & Sullivan, M. Observational properties of thermonuclear supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0858-0 (2019).

  27. 27.

    Modjaz, M. Stellar forensics with the Supernova-GRB connection. Astron. Nachr. 332, 434–447 (2011).

  28. 28.

    Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The observer’s guide to the gamma-ray burst supernova connection. Adv. Astron. 2017, 8929054 (2017).

  29. 29.

    Liu, Y.-Q., Modjaz, M. & Bianco, F. B. Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. Astrophys. J. 845, 85 (2017).

  30. 30.

    Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

  31. 31.

    Inserra, C. Observational properties of extreme supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0854-4 (2019).

  32. 32.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IX. SN 2014av, and characterization of type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016).

  33. 33.

    Hosseinzadeh, G. et al. Type Ibn supernovae show photometric homogeneity and spectral diversity at maximum light. Astrophys. J. 836, 158 (2017).

  34. 34.

    Kiewe, M. et al. Caltech Core-Collapse Project (CCCP) observations of type IIn Supernovae: typical properties and implications for their progenitor stars. Astrophys. J. 744, 10 (2012).

  35. 35.

    Hosseinzadeh, G. et al. Type Ibn supernovae may not all come from massive stars. Astrophys. J. Lett. 871, L9 (2019).

  36. 36.

    Irani, I. et al. SN 2016hil — a type II supernova in the remote outskirts of an elliptical host and its origin. Preprint at https://arxiv.org/abs/1904.01425 (2019).

  37. 37.

    Clocchiatti, A. et al. SN 1983V in NGC 1365 and the nature of stripped envelope core-collapse supernovae. Astrophys. J. 483, 675–697 (1997).

  38. 38.

    Chen, T. W. et al. SN 2017ens: the metamorphosis of a luminous broadlined type Ic supernova into an SN IIn. Astrophys. J. 867, L31 (2018).

  39. 39.

    Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).

  40. 40.

    Prentice, S. J. & Mazzali, P. A. A physically motivated classification of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 469, 2672–2694 (2017).

  41. 41.

    Sun, F. & Gal-Yam, A. Quantitative classification of type I supernovae using spectroscopic features at maximum brightness. Preprint at https://arxiv.org/abs/1707.02543 (2017).

  42. 42.

    Williamson, M., Modjaz, M. & Bianco, F. Optimal classification and outlier detection for stripped-envelope core-collapse supernovae. Preprint at https://arxiv.org/abs/1903.06815 (2019).

  43. 43.

    Arcavi, I. et al. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature 551, 210–213 (2017).

  44. 44.

    Terreran, G. et al. Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nat. Astron. 1, 713–720 (2017).

  45. 45.

    Andrews, J. E. & Smith, N. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. Mon. Not. R. Astron. Soc. 477, 74–79 (2018).

  46. 46.

    Dessart, L. A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls. Astron. Astrophys. 610, L10 (2018).

  47. 47.

    Soker, N. & Gilkis, A. Explaining iPTF14hls as a common-envelope jets supernova. Mon. Not. R. Astron. Soc. 475, 1198–1202 (2018).

  48. 48.

    Wang, L. J. et al. A fallback accretion model for the unusual type II-P supernova iPTF14hls. Astrophys. J. 865, 95 (2018).

  49. 49.

    Woosley, S. E. Models for the unusual supernova iPTF14hls. Astrophys. J. 863, 105 (2018).

  50. 50.

    Drout, M. R. et al. The first systematic study of type Ibc supernova multi-band light curves. Astrophys. J. 741, 97–117 (2011).

  51. 51.

    Bianco, F. B. et al. Multi-color optical and near-infrared light curves of 64 stripped-envelope core-collapse supernovae. Astrophys. J. Suppl. Ser. 213, 19 (2014).

  52. 52.

    Modjaz, M. et al. Optical spectra of 73 stripped-envelope core-collapse supernovae. Astron. J. 147, 99 (2014).

  53. 53.

    Taddia, F. et al. Early-time light curves of type Ib/c supernovae from the SDSS-II supernova survey. Astron. Astrophys. 574, A60 (2015).

  54. 54.

    Stritzinger, M. D. et al. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae. Astron. Astrophys. 609, A134 (2018).

  55. 55.

    Fremling, C. et al. Oxygen and helium in stripped-envelope supernovae. Astron. Astrophys. 618, A37 (2018).

  56. 56.

    Taddia, F. et al. Analysis of broad-lined type Ic supernovae from the (intermediate) Palomar Transient Factory. Astron. Astrophys. 621, A71 (2019).

  57. 57.

    Shivvers, I. et al. The Berkeley sample of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 482, 1545–1556 (2019).

  58. 58.

    Prentice, S. J. et al. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? Mon. Not. R. Astron. Soc. 485, 1559–1578 (2019).

  59. 59.

    Smith, N. et al. A massive progenitor of the luminous type IIn supernova 2010jl. Astrophys. J. 732, 63 (2011).

  60. 60.

    Lyman, J. D. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

  61. 61.

    Graur, O. et al. LOSS revisited. I. Unraveling correlations between supernova rates and galaxy properties, as measured in a reanalysis of the lick observatory supernova search. Astrophys. J. 837, 120 (2017).

  62. 62.

    Taddia, F. et al. The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves. Astron. Astrophys. 609, A136 (2018).

  63. 63.

    Kerzendorf, W. E. et al. No surviving non-compact stellar companion to Cassiopeia A. Astron. Astrophys. 623, A34 (2019).

  64. 64.

    Krause, O. et al. The Cassiopeia A supernova was of type IIb. Science 320, 1195–1197 (2008).

  65. 65.

    Rest, A. et al. Scattered-light echoes from the historical galactic supernovae Cassiopeia A and Tycho (SN 1572). Astrophys. J. Lett. 681, L81 (2008).

  66. 66.

    Arnett, W. D. Type I supernovae. I — Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

  67. 67.

    Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–643 (1969).

  68. 68.

    Weaver, T. A. The structure of supernova shock waves. Astrophys. J. Suppl. Ser. 32, 233–282 (1976).

  69. 69.

    Klein, R. I. & Chevalier, R. A. X-ray bursts from type II supernovae. Astrophys. J. Lett. 223, L109–L112 (1978).

  70. 70.

    Falk, S. W. Shock steepening and prompt thermal emission in supernovae. Astrophys. J. Lett. 225, L133–L136 (1978).

  71. 71.

    Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).

  72. 72.

    Nakar, E. & Sari, R. Early supernovae light curves following the shock breakout. Astrophys. J. 725, 904–921 (2010).

  73. 73.

    Rabinak, I. & Waxman, E. The early UV/optical emission from core-collapse supernovae. Astrophys. J. 728, 63 (2011).

  74. 74.

    Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, 2016).

  75. 75.

    Tominaga, N. et al. Shock breakout in Type II plateau supernovae: prospects for high-redshift supernova surveys. Astrophys. J. Suppl. Ser. 193, 20 (2011).

  76. 76.

    Schawinski, K. et al. Supernova shock breakout from a red supergiant. Science 321, 223–226 (2008).

  77. 77.

    Soderberg, A. M. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

  78. 78.

    Gezari, S. et al. GALEX detection of shock breakout in type IIP supernova PS1–13arp: implications for the progenitor star wind. Astrophys. J. 804, 28 (2015).

  79. 79.

    Couch, S. M., Pooley, D., Wheeler, J. C. & Milosavljević, M. Aspherical supernova shock breakout and the observations of supernova 2008D. Astrophys. J. 727, 104 (2011).

  80. 80.

    Svirski, G. & Nakar, E. SN 2008D: a Wolf–Rayet explosion through a thick wind. Astrophys. J. Lett. 788, L14 (2014).

  81. 81.

    Mazzali, P. A. et al. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008).

  82. 82.

    Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

  83. 83.

    Nakar, E. & Sari, R. Relativistic shock breakouts — a variety of gamma-ray flares: from low-luminosity gamma-ray bursts to type Ia supernovae. Astrophys. J. 747, 88 (2012).

  84. 84.

    Irwin, C. M. & Chevalier, R. A. Jet or shock breakout? The low-luminosity GRB 060218. Mon. Not. R. Astron. Soc. 460, 1680–1704 (2016).

  85. 85.

    Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

  86. 86.

    Rubin, A. & Gal-Yam, A. Exploring the efficacy and limitations of shock-cooling models: new analysis of type II supernovae observed by the Kepler mission. Astrophys. J. 848, 8 (2017).

  87. 87.

    Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

  88. 88.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

  89. 89.

    Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. Lett. 729, L6 (2011).

  90. 90.

    Balberg, S. & Loeb, A. Supernova shock breakout through a wind. Mon. Not. R. Astron. Soc. 414, 1715–1720 (2011).

  91. 91.

    Svirski, G., Nakar, E. & Sari, R. Optical to X-ray supernova light curves following shock breakout through a thick wind. Astrophys. J. 759, 108 (2012).

  92. 92.

    Ginzburg, S. & Balberg, S. Light curves from supernova shock breakout through an extended wind. Astrophys. J. 780, 18 (2014).

  93. 93.

    Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017).

  94. 94.

    Forster, F. et al. The delay of shock breakout due to circumstellar material evident in most type II supernovae. Nat. Astron. 2, 808–818 (2018).

  95. 95.

    Chevalier, R. A. & Fransson, C. Shock breakout emission from a type Ib/c supernova: XRT 080109/SN 2008D. Astrophys. J. Lett. 683, L135 (2008).

  96. 96.

    Nakar, E. & Piro, A. L. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes. Astrophys. J. 788, 193 (2014).

  97. 97.

    Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

  98. 98.

    Sapir, N. & Waxman, E. UV/optical emission from the expanding envelopes of type II supernovae. Astrophys. J. 838, 130 (2017).

  99. 99.

    Richmond, M. W., Treffers, R. R., Filippenko, A. V. & Paik, Y. UBVRI photometry of SN 1993J in M81: days 3 to 365. Astron. J. 112, 732 (1996).

  100. 100.

    Arcavi, I. et al. SN 2011dh: discovery of a type IIb supernova from a compact progenitor in the nearby galaxy M51. Astrophys. J. Lett. 742, L18 (2011).

  101. 101.

    Kumar, B. et al. Light curve and spectral evolution of the type IIb supernova 2011fu. Mon. Not. R. Astron. Soc. 431, 308–321 (2013).

  102. 102.

    Bufano, F. et al. SN 2011hs: a fast and faint type IIb supernova from a supergiant progenitor. Mon. Not. R. Astron. Soc. 439, 1807–1828 (2014).

  103. 103.

    Morales-Garoffolo, A. et al. SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope. Mon. Not. R. Astron. Soc. 445, 1647–1662 (2014).

  104. 104.

    Stritzinger, M. et al. Optical photometry of the type Ia Supernova 1999ee and the type Ib/c supernova 1999ex in IC 5179. Astron. J. 124, 2100–2117 (2002).

  105. 105.

    Modjaz, M. et al. From shock breakout to peak and beyond: extensive panchromatic observations of the type Ib Supernova 2008D associated with Swift X-ray transient 080109. Astrophys. J. 702, 226–248 (2009).

  106. 106.

    Izzo, L. et al. Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst. Nature 565, 324–327 (2019).

  107. 107.

    Hoflich, P., Langer, N. & Duschinger, M. Supernova 1993J — explosion of a massive cool supergiant with a small envelope mass. Astron. Astrophys. 275, L29 (1993).

  108. 108.

    Bersten, M. C. et al. The type IIb supernova 2011dh from a supergiant progenitor. Astrophys. J. 757, 31 (2012).

  109. 109.

    Benvenuto, O. G., Bersten, M. C. & Nomoto, K. A binary progenitor for the type IIb supernova 2011dh in M51. Astrophys. J. 762, 74 (2013).

  110. 110.

    Morozova, V., Piro, A. L. & Valenti, S. Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).

  111. 111.

    Morozova, V., Piro, A. L. & Valenti, S. Measuring the progenitor masses and dense circumstellar material of type II supernovae. Astrophys. J. 858, 15 (2018).

  112. 112.

    Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

  113. 113.

    Shivvers, I. et al. Early emission from the type IIn supernova 1998S at high resolution. Astrophys. J. 806, 213 (2015).

  114. 114.

    Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).

  115. 115.

    Khazov, D. et al. Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old type II supernovae. Astrophys. J. 818, 3 (2016).

  116. 116.

    Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

  117. 117.

    Ivezic, Z. et al. Large Synoptic Survey Telescope: from science drivers to reference design. Serbian Astron. J. 176, 1–13 (2008).

  118. 118.

    Tartaglia, L. et al. The early detection and follow-up of the highly obscured type II supernova 2016ija/DLT16am. Astrophys. J. 853, 62 (2018).

  119. 119.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

  120. 120.

    Blagorodnova, N. et al. The SED machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

  121. 121.

    Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

  122. 122.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

  123. 123.

    Sagiv, I. et al. Science with a wide-field UV transient explorer. Astron. J. 147, 79 (2014).

  124. 124.

    Cenko, S. B. et al. CUTIE: Cubesat Ultraviolet Transient Imaging Experiment. In Am. Astron. Soc. Meet. #229 id.328.04 (AAS, 2017).

  125. 125.

    Yaron, O. & Gal-Yam, A. WISeREP — an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).

  126. 126.

    Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017).

  127. 127.

    Street, R. A., Bowman, M., Saunders, E. S. & Boroson, T. General-purpose software for managing astronomical observing programs in the LSST era. Proc. SPIE 10707, 1070711 (2018).

  128. 128.

    Inserra, C. et al. The type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase. Mon. Not. R. Astron. Soc. 417, 261–279 (2011).

  129. 129.

    Gutiérrez, C. P. et al. Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. Astrophys. J. 850, 89 (2017).

  130. 130.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — I. Type Ibn (SN 2006jc-like) events. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).

  131. 131.

    Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001).

  132. 132.

    Tominaga, N. et al. The unique type Ib supernova 2005bf: a WN star explosion model for peculiar light curves and spectra. Astrophys. J. 633, L97–L100 (2005).

  133. 133.

    Folatelli, G. et al. SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts. Astrophys. J. 641, 1039–1050 (2006).

  134. 134.

    Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

  135. 135.

    Okyudo, M., Kato, T., Ishida, T., Tokimasa, N. & Yamaoka, H. A V-band light curve of SN 1993J during the first 50 days. Publ. Astron. Soc. Jpn 45, L63–L65 (1993).

  136. 136.

    Benson, P. J. et al. Light curves of SN 1993J from the Keck Northeast Astronomy Consortium. Astron. J. 107, 1453–1460 (1994).

  137. 137.

    Kasliwal, M. M. Bridging the gap: Elusive Explosions in the Local Universe. PhD thesis, California Institute of Technology (2011).

  138. 138.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

  139. 139.

    Kasliwal, M. M. et al. Discovery of a new photometric sub-class of faint and fast classical novae. Astrophys. J. 735, 94 (2011).

  140. 140.

    Vinkó, J. et al. A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? Astrophys. J. 798, 12 (2015).

  141. 141.

    Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).

  142. 142.

    Rest, A. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat. Astron. 2, 307–311 (2018).

  143. 143.

    Ho, A. Y. Q. et al. The death throes of a stripped massive star: an eruptive mass-loss history encoded in pre-explosion emission, a rapidly rising luminous transient, and a broad-lined Ic supernova SN2018gep. Preprint at https://arxiv.org/abs/1904.11009 (2019).

  144. 144.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

  145. 145.

    Gall, E. E. E. et al. A comparative study of type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astron. Astrophys. 582, A3 (2015).

  146. 146.

    Taddia, F. et al. Long-rising type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astron. Astrophys. 588, A5 (2016).

  147. 147.

    Arcavi, I. et al. Rapidly rising transients in the supernova — superluminous supernova gap. Astrophys. J. 819, 35 (2016).

  148. 148.

    Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

  149. 149.

    Modjaz, M. et al. Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. Astrophys. J. 645, L21–L24 (2006).

  150. 150.

    Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P. & Pritchard, T. SOUSA: the Swift Optical/Ultraviolet Supernova Archive. Astron. Space Sci. 354, 89–96 (2014).

  151. 151.

    Arcavi, I. et al. Constraints on the progenitor of SN 2016gkg from its shock-cooling light curve. Astrophys. J. 837, L2 (2017).

Download references

Acknowledgements

We thank E. Nakar, T. Piro, F. Taddia, S. Valenti and E. Waxman for valuable comments. M.M. is supported by the NSF CAREER award AST-1352405, by the NSF award AST-1413260 and by a Faculty Fellowship from the Humboldt Foundation. C.P.G. acknowledges support from EU/FP7-ERC grant no. [615929]. I.A. acknowledges support from the Israel Science Foundation (grant number 2108/18).

Author information

Correspondence to Maryam Modjaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading