Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New regimes in the observation of core-collapse supernovae


Core-collapse supernovae (CCSNe) mark the deaths of stars more massive than about eight times the mass of the Sun and are intrinsically the most common kind of catastrophic cosmic explosions. They can teach us about many important physical processes, such as nucleosynthesis and stellar evolution, and thus they have been studied extensively for decades. However, many crucial questions remain unanswered, including the most basic ones regarding which kinds of massive stars achieve which kind of explosions, and how. Observationally, this is related to the open puzzles of whether CCSNe can be divided into distinct types or whether they are drawn from a population with a continuous set of properties, and what progenitor characteristics drive the diversity of observed explosions. Recent developments in wide-field surveys and rapid-response follow-up facilities are helping us answer these questions by providing new tools, such as: (1) large statistical samples that enable population studies of the most common SNe and reveal rare (but extremely informative) events that question our standard understanding of the explosion physics involved; and (2) observations of early SNe emission taken shortly after explosion, which carry signatures of the progenitor structure and mass-loss history. Future facilities will increase our observational capabilities and allow us to answer many open questions related to these extremely energetic phenomena of the Universe.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spectral classification of CCSNe.
Fig. 2: Photometric diversity of CCSNe.
Fig. 3: A new phase-space.
Fig. 4: A high-cadence look at CCSN light curves.
Fig. 5: ‘Flash spectroscopy’ of infant SNe.


  1. 1.

    Alsabti, A. W. & Murdin, P. Handbook of Supernovae (Springer, 2016).

  2. 2.

    Minkowski, R. Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224–225 (1941).

    ADS  Google Scholar 

  3. 3.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS  Google Scholar 

  4. 4.

    Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1–43 (Springer, 2016).

  5. 5.

    Barbon, R., Ciatti, F. & Rosino, L. Photometric properties of type II supernovae. Astron. Astrophys. 72, 287–292 (1979).

    ADS  Google Scholar 

  6. 6.

    Schlegel, E. M. On the early spectroscopic distinction of type II supernovae. Astron. J. 111, 1660–1667 (1996).

    ADS  Google Scholar 

  7. 7.

    Gutiérrez, C. P. et al. Hα spectral diversity of type II supernovae: correlations with photometric properties. Astrophys. J. Lett. 786, L15 (2014).

    ADS  Google Scholar 

  8. 8.

    Gutiérrez, C. P. et al. Type II supernova spectral diversity. II. Spectroscopic and photometric correlations. Astrophys. J. 850, 90 (2017).

    ADS  Google Scholar 

  9. 9.

    Blanco, V. M. et al. Supernova 1987A in the Large Magellanic Cloud — initial observations at Cerro Tololo. Astrophys. J. 320, 589–596 (1987).

    ADS  Google Scholar 

  10. 10.

    Hamuy, M., Suntzeff, N. B., Gonzalez, R. & Martin, G. SN 1987A in the LMC — UBVRI photometry at Cerro Tololo. Astron. J. 95, 63–83 (1988).

    ADS  Google Scholar 

  11. 11.

    Chevalier, R. A. The interaction of the radiation from a type II supernova with a circumstellar shell. Astrophys. J. 251, 259–265 (1981).

    ADS  Google Scholar 

  12. 12.

    Fransson, C. X-ray and UV-emission from supernova shock waves in stellar winds. Astron. Astrophys. 111, 140–150 (1982).

    ADS  Google Scholar 

  13. 13.

    Schlegel, E. M. A new subclass of type II supernovae? Mon. Not. R. Astron. Soc. 244, 269–271 (1990).

    ADS  Google Scholar 

  14. 14.

    Clocchiatti, A. et al. A study of SN 1992H in NGC 5377. Astron. J. 111, 1286–1303 (1996).

    ADS  Google Scholar 

  15. 15.

    Patat, F., Barbon, R., Cappellaro, E. & Turatto, M. Light curves of type II supernovae. 2: the analysis. Astron. Astrophys. 282, 731–741 (1994).

    ADS  Google Scholar 

  16. 16.

    Arcavi, I. et al. Caltech Core-Collapse Project (CCCP) observations of type II supernovae: evidence for three distinct photometric subtypes. Astrophys. J. Lett. 756, L30 (2012).

    ADS  Google Scholar 

  17. 17.

    Faran, T. et al. A sample of type II-L supernovae. Mon. Not. R. Astron. Soc. 445, 554–569 (2014).

    ADS  Google Scholar 

  18. 18.

    Anderson, J. P. et al. Characterizing the V-band light-curves of hydrogen-rich type II supernovae. Astrophys. J. 786, 67 (2014).

    ADS  Google Scholar 

  19. 19.

    Sanders, N. E. et al. Toward characterization of the type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1. Astrophys. J. 799, 208 (2015).

    ADS  Google Scholar 

  20. 20.

    Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

    ADS  Google Scholar 

  21. 21.

    Galbany, L. et al. UBVRIz light curves of 51 type II supernovae. Astron. J. 151, 33 (2016).

    ADS  Google Scholar 

  22. 22.

    Rubin, A. et al. Type II supernova energetics and comparison of light curves to shock-cooling models. Astrophys. J. 820, 33 (2016).

    ADS  Google Scholar 

  23. 23.

    Valenti, S. et al. Supernova 2013by: a type IIL supernova with a IIP-like light-curve drop. Mon. Not. R. Astron. Soc. 448, 2608–2616 (2015).

    ADS  Google Scholar 

  24. 24.

    Smartt, S. J. Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Publ. Astron. Soc. Aust. 32, e016 (2015).

    ADS  Google Scholar 

  25. 25.

    Elias-Rosa, N. et al. The massive progenitor of the type II-linear supernova 2009kr. Astrophys. J. Lett. 714, L254–L259 (2010).

    ADS  Google Scholar 

  26. 26.

    Jha, S. W., Maguire, K. & Sullivan, M. Observational properties of thermonuclear supernovae. Nat. Astron. (2019).

  27. 27.

    Modjaz, M. Stellar forensics with the Supernova-GRB connection. Astron. Nachr. 332, 434–447 (2011).

    ADS  Google Scholar 

  28. 28.

    Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The observer’s guide to the gamma-ray burst supernova connection. Adv. Astron. 2017, 8929054 (2017).

    ADS  Google Scholar 

  29. 29.

    Liu, Y.-Q., Modjaz, M. & Bianco, F. B. Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. Astrophys. J. 845, 85 (2017).

    ADS  Google Scholar 

  30. 30.

    Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    ADS  Google Scholar 

  31. 31.

    Inserra, C. Observational properties of extreme supernovae. Nat. Astron. (2019).

  32. 32.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IX. SN 2014av, and characterization of type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016).

    ADS  Google Scholar 

  33. 33.

    Hosseinzadeh, G. et al. Type Ibn supernovae show photometric homogeneity and spectral diversity at maximum light. Astrophys. J. 836, 158 (2017).

    ADS  Google Scholar 

  34. 34.

    Kiewe, M. et al. Caltech Core-Collapse Project (CCCP) observations of type IIn Supernovae: typical properties and implications for their progenitor stars. Astrophys. J. 744, 10 (2012).

    ADS  Google Scholar 

  35. 35.

    Hosseinzadeh, G. et al. Type Ibn supernovae may not all come from massive stars. Astrophys. J. Lett. 871, L9 (2019).

    ADS  Google Scholar 

  36. 36.

    Irani, I. et al. SN 2016hil — a type II supernova in the remote outskirts of an elliptical host and its origin. Preprint at (2019).

  37. 37.

    Clocchiatti, A. et al. SN 1983V in NGC 1365 and the nature of stripped envelope core-collapse supernovae. Astrophys. J. 483, 675–697 (1997).

    ADS  Google Scholar 

  38. 38.

    Chen, T. W. et al. SN 2017ens: the metamorphosis of a luminous broadlined type Ic supernova into an SN IIn. Astrophys. J. 867, L31 (2018).

    ADS  Google Scholar 

  39. 39.

    Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).

    ADS  Google Scholar 

  40. 40.

    Prentice, S. J. & Mazzali, P. A. A physically motivated classification of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 469, 2672–2694 (2017).

    ADS  Google Scholar 

  41. 41.

    Sun, F. & Gal-Yam, A. Quantitative classification of type I supernovae using spectroscopic features at maximum brightness. Preprint at (2017).

  42. 42.

    Williamson, M., Modjaz, M. & Bianco, F. Optimal classification and outlier detection for stripped-envelope core-collapse supernovae. Preprint at (2019).

  43. 43.

    Arcavi, I. et al. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature 551, 210–213 (2017).

    ADS  Google Scholar 

  44. 44.

    Terreran, G. et al. Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nat. Astron. 1, 713–720 (2017).

    ADS  Google Scholar 

  45. 45.

    Andrews, J. E. & Smith, N. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. Mon. Not. R. Astron. Soc. 477, 74–79 (2018).

    ADS  Google Scholar 

  46. 46.

    Dessart, L. A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls. Astron. Astrophys. 610, L10 (2018).

    ADS  Google Scholar 

  47. 47.

    Soker, N. & Gilkis, A. Explaining iPTF14hls as a common-envelope jets supernova. Mon. Not. R. Astron. Soc. 475, 1198–1202 (2018).

    ADS  Google Scholar 

  48. 48.

    Wang, L. J. et al. A fallback accretion model for the unusual type II-P supernova iPTF14hls. Astrophys. J. 865, 95 (2018).

    ADS  Google Scholar 

  49. 49.

    Woosley, S. E. Models for the unusual supernova iPTF14hls. Astrophys. J. 863, 105 (2018).

    ADS  Google Scholar 

  50. 50.

    Drout, M. R. et al. The first systematic study of type Ibc supernova multi-band light curves. Astrophys. J. 741, 97–117 (2011).

    ADS  Google Scholar 

  51. 51.

    Bianco, F. B. et al. Multi-color optical and near-infrared light curves of 64 stripped-envelope core-collapse supernovae. Astrophys. J. Suppl. Ser. 213, 19 (2014).

    ADS  Google Scholar 

  52. 52.

    Modjaz, M. et al. Optical spectra of 73 stripped-envelope core-collapse supernovae. Astron. J. 147, 99 (2014).

    ADS  Google Scholar 

  53. 53.

    Taddia, F. et al. Early-time light curves of type Ib/c supernovae from the SDSS-II supernova survey. Astron. Astrophys. 574, A60 (2015).

    Google Scholar 

  54. 54.

    Stritzinger, M. D. et al. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae. Astron. Astrophys. 609, A134 (2018).

    Google Scholar 

  55. 55.

    Fremling, C. et al. Oxygen and helium in stripped-envelope supernovae. Astron. Astrophys. 618, A37 (2018).

    Google Scholar 

  56. 56.

    Taddia, F. et al. Analysis of broad-lined type Ic supernovae from the (intermediate) Palomar Transient Factory. Astron. Astrophys. 621, A71 (2019).

    Google Scholar 

  57. 57.

    Shivvers, I. et al. The Berkeley sample of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 482, 1545–1556 (2019).

    ADS  Google Scholar 

  58. 58.

    Prentice, S. J. et al. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? Mon. Not. R. Astron. Soc. 485, 1559–1578 (2019).

    ADS  Google Scholar 

  59. 59.

    Smith, N. et al. A massive progenitor of the luminous type IIn supernova 2010jl. Astrophys. J. 732, 63 (2011).

    ADS  Google Scholar 

  60. 60.

    Lyman, J. D. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

    ADS  Google Scholar 

  61. 61.

    Graur, O. et al. LOSS revisited. I. Unraveling correlations between supernova rates and galaxy properties, as measured in a reanalysis of the lick observatory supernova search. Astrophys. J. 837, 120 (2017).

    ADS  Google Scholar 

  62. 62.

    Taddia, F. et al. The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves. Astron. Astrophys. 609, A136 (2018).

    Google Scholar 

  63. 63.

    Kerzendorf, W. E. et al. No surviving non-compact stellar companion to Cassiopeia A. Astron. Astrophys. 623, A34 (2019).

    Google Scholar 

  64. 64.

    Krause, O. et al. The Cassiopeia A supernova was of type IIb. Science 320, 1195–1197 (2008).

    ADS  Google Scholar 

  65. 65.

    Rest, A. et al. Scattered-light echoes from the historical galactic supernovae Cassiopeia A and Tycho (SN 1572). Astrophys. J. Lett. 681, L81 (2008).

    ADS  Google Scholar 

  66. 66.

    Arnett, W. D. Type I supernovae. I — Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    ADS  Google Scholar 

  67. 67.

    Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–643 (1969).

    ADS  Google Scholar 

  68. 68.

    Weaver, T. A. The structure of supernova shock waves. Astrophys. J. Suppl. Ser. 32, 233–282 (1976).

    ADS  Google Scholar 

  69. 69.

    Klein, R. I. & Chevalier, R. A. X-ray bursts from type II supernovae. Astrophys. J. Lett. 223, L109–L112 (1978).

    ADS  Google Scholar 

  70. 70.

    Falk, S. W. Shock steepening and prompt thermal emission in supernovae. Astrophys. J. Lett. 225, L133–L136 (1978).

    ADS  Google Scholar 

  71. 71.

    Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).

    ADS  Google Scholar 

  72. 72.

    Nakar, E. & Sari, R. Early supernovae light curves following the shock breakout. Astrophys. J. 725, 904–921 (2010).

    ADS  Google Scholar 

  73. 73.

    Rabinak, I. & Waxman, E. The early UV/optical emission from core-collapse supernovae. Astrophys. J. 728, 63 (2011).

    ADS  Google Scholar 

  74. 74.

    Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, 2016).

  75. 75.

    Tominaga, N. et al. Shock breakout in Type II plateau supernovae: prospects for high-redshift supernova surveys. Astrophys. J. Suppl. Ser. 193, 20 (2011).

    ADS  Google Scholar 

  76. 76.

    Schawinski, K. et al. Supernova shock breakout from a red supergiant. Science 321, 223–226 (2008).

    ADS  Google Scholar 

  77. 77.

    Soderberg, A. M. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

    ADS  Google Scholar 

  78. 78.

    Gezari, S. et al. GALEX detection of shock breakout in type IIP supernova PS1–13arp: implications for the progenitor star wind. Astrophys. J. 804, 28 (2015).

    ADS  Google Scholar 

  79. 79.

    Couch, S. M., Pooley, D., Wheeler, J. C. & Milosavljević, M. Aspherical supernova shock breakout and the observations of supernova 2008D. Astrophys. J. 727, 104 (2011).

    ADS  Google Scholar 

  80. 80.

    Svirski, G. & Nakar, E. SN 2008D: a Wolf–Rayet explosion through a thick wind. Astrophys. J. Lett. 788, L14 (2014).

    ADS  Google Scholar 

  81. 81.

    Mazzali, P. A. et al. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008).

    ADS  Google Scholar 

  82. 82.

    Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    ADS  Google Scholar 

  83. 83.

    Nakar, E. & Sari, R. Relativistic shock breakouts — a variety of gamma-ray flares: from low-luminosity gamma-ray bursts to type Ia supernovae. Astrophys. J. 747, 88 (2012).

    ADS  Google Scholar 

  84. 84.

    Irwin, C. M. & Chevalier, R. A. Jet or shock breakout? The low-luminosity GRB 060218. Mon. Not. R. Astron. Soc. 460, 1680–1704 (2016).

    ADS  Google Scholar 

  85. 85.

    Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

    ADS  Google Scholar 

  86. 86.

    Rubin, A. & Gal-Yam, A. Exploring the efficacy and limitations of shock-cooling models: new analysis of type II supernovae observed by the Kepler mission. Astrophys. J. 848, 8 (2017).

    ADS  Google Scholar 

  87. 87.

    Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

    ADS  Google Scholar 

  88. 88.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    ADS  Google Scholar 

  89. 89.

    Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. Lett. 729, L6 (2011).

    ADS  Google Scholar 

  90. 90.

    Balberg, S. & Loeb, A. Supernova shock breakout through a wind. Mon. Not. R. Astron. Soc. 414, 1715–1720 (2011).

    ADS  Google Scholar 

  91. 91.

    Svirski, G., Nakar, E. & Sari, R. Optical to X-ray supernova light curves following shock breakout through a thick wind. Astrophys. J. 759, 108 (2012).

    ADS  Google Scholar 

  92. 92.

    Ginzburg, S. & Balberg, S. Light curves from supernova shock breakout through an extended wind. Astrophys. J. 780, 18 (2014).

    ADS  Google Scholar 

  93. 93.

    Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017).

    ADS  Google Scholar 

  94. 94.

    Forster, F. et al. The delay of shock breakout due to circumstellar material evident in most type II supernovae. Nat. Astron. 2, 808–818 (2018).

    ADS  Google Scholar 

  95. 95.

    Chevalier, R. A. & Fransson, C. Shock breakout emission from a type Ib/c supernova: XRT 080109/SN 2008D. Astrophys. J. Lett. 683, L135 (2008).

    ADS  Google Scholar 

  96. 96.

    Nakar, E. & Piro, A. L. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes. Astrophys. J. 788, 193 (2014).

    ADS  Google Scholar 

  97. 97.

    Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

    ADS  Google Scholar 

  98. 98.

    Sapir, N. & Waxman, E. UV/optical emission from the expanding envelopes of type II supernovae. Astrophys. J. 838, 130 (2017).

    ADS  Google Scholar 

  99. 99.

    Richmond, M. W., Treffers, R. R., Filippenko, A. V. & Paik, Y. UBVRI photometry of SN 1993J in M81: days 3 to 365. Astron. J. 112, 732 (1996).

    ADS  Google Scholar 

  100. 100.

    Arcavi, I. et al. SN 2011dh: discovery of a type IIb supernova from a compact progenitor in the nearby galaxy M51. Astrophys. J. Lett. 742, L18 (2011).

    ADS  Google Scholar 

  101. 101.

    Kumar, B. et al. Light curve and spectral evolution of the type IIb supernova 2011fu. Mon. Not. R. Astron. Soc. 431, 308–321 (2013).

    ADS  Google Scholar 

  102. 102.

    Bufano, F. et al. SN 2011hs: a fast and faint type IIb supernova from a supergiant progenitor. Mon. Not. R. Astron. Soc. 439, 1807–1828 (2014).

    ADS  Google Scholar 

  103. 103.

    Morales-Garoffolo, A. et al. SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope. Mon. Not. R. Astron. Soc. 445, 1647–1662 (2014).

    ADS  Google Scholar 

  104. 104.

    Stritzinger, M. et al. Optical photometry of the type Ia Supernova 1999ee and the type Ib/c supernova 1999ex in IC 5179. Astron. J. 124, 2100–2117 (2002).

    ADS  Google Scholar 

  105. 105.

    Modjaz, M. et al. From shock breakout to peak and beyond: extensive panchromatic observations of the type Ib Supernova 2008D associated with Swift X-ray transient 080109. Astrophys. J. 702, 226–248 (2009).

    ADS  Google Scholar 

  106. 106.

    Izzo, L. et al. Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst. Nature 565, 324–327 (2019).

    ADS  Google Scholar 

  107. 107.

    Hoflich, P., Langer, N. & Duschinger, M. Supernova 1993J — explosion of a massive cool supergiant with a small envelope mass. Astron. Astrophys. 275, L29 (1993).

    ADS  Google Scholar 

  108. 108.

    Bersten, M. C. et al. The type IIb supernova 2011dh from a supergiant progenitor. Astrophys. J. 757, 31 (2012).

    ADS  Google Scholar 

  109. 109.

    Benvenuto, O. G., Bersten, M. C. & Nomoto, K. A binary progenitor for the type IIb supernova 2011dh in M51. Astrophys. J. 762, 74 (2013).

    ADS  Google Scholar 

  110. 110.

    Morozova, V., Piro, A. L. & Valenti, S. Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).

    ADS  Google Scholar 

  111. 111.

    Morozova, V., Piro, A. L. & Valenti, S. Measuring the progenitor masses and dense circumstellar material of type II supernovae. Astrophys. J. 858, 15 (2018).

    ADS  Google Scholar 

  112. 112.

    Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    ADS  Google Scholar 

  113. 113.

    Shivvers, I. et al. Early emission from the type IIn supernova 1998S at high resolution. Astrophys. J. 806, 213 (2015).

    ADS  Google Scholar 

  114. 114.

    Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).

    Google Scholar 

  115. 115.

    Khazov, D. et al. Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old type II supernovae. Astrophys. J. 818, 3 (2016).

    ADS  Google Scholar 

  116. 116.

    Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS  Google Scholar 

  117. 117.

    Ivezic, Z. et al. Large Synoptic Survey Telescope: from science drivers to reference design. Serbian Astron. J. 176, 1–13 (2008).

    ADS  Google Scholar 

  118. 118.

    Tartaglia, L. et al. The early detection and follow-up of the highly obscured type II supernova 2016ija/DLT16am. Astrophys. J. 853, 62 (2018).

    ADS  Google Scholar 

  119. 119.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    ADS  Google Scholar 

  120. 120.

    Blagorodnova, N. et al. The SED machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    ADS  Google Scholar 

  121. 121.

    Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    ADS  Google Scholar 

  122. 122.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  Google Scholar 

  123. 123.

    Sagiv, I. et al. Science with a wide-field UV transient explorer. Astron. J. 147, 79 (2014).

    ADS  Google Scholar 

  124. 124.

    Cenko, S. B. et al. CUTIE: Cubesat Ultraviolet Transient Imaging Experiment. In Am. Astron. Soc. Meet. #229 id.328.04 (AAS, 2017).

  125. 125.

    Yaron, O. & Gal-Yam, A. WISeREP — an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).

    ADS  Google Scholar 

  126. 126.

    Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017).

    ADS  Google Scholar 

  127. 127.

    Street, R. A., Bowman, M., Saunders, E. S. & Boroson, T. General-purpose software for managing astronomical observing programs in the LSST era. Proc. SPIE 10707, 1070711 (2018).

    Google Scholar 

  128. 128.

    Inserra, C. et al. The type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase. Mon. Not. R. Astron. Soc. 417, 261–279 (2011).

    ADS  Google Scholar 

  129. 129.

    Gutiérrez, C. P. et al. Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. Astrophys. J. 850, 89 (2017).

    ADS  Google Scholar 

  130. 130.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — I. Type Ibn (SN 2006jc-like) events. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).

    ADS  Google Scholar 

  131. 131.

    Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001).

    ADS  Google Scholar 

  132. 132.

    Tominaga, N. et al. The unique type Ib supernova 2005bf: a WN star explosion model for peculiar light curves and spectra. Astrophys. J. 633, L97–L100 (2005).

    ADS  Google Scholar 

  133. 133.

    Folatelli, G. et al. SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts. Astrophys. J. 641, 1039–1050 (2006).

    ADS  Google Scholar 

  134. 134.

    Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

    ADS  Google Scholar 

  135. 135.

    Okyudo, M., Kato, T., Ishida, T., Tokimasa, N. & Yamaoka, H. A V-band light curve of SN 1993J during the first 50 days. Publ. Astron. Soc. Jpn 45, L63–L65 (1993).

    ADS  Google Scholar 

  136. 136.

    Benson, P. J. et al. Light curves of SN 1993J from the Keck Northeast Astronomy Consortium. Astron. J. 107, 1453–1460 (1994).

    ADS  Google Scholar 

  137. 137.

    Kasliwal, M. M. Bridging the gap: Elusive Explosions in the Local Universe. PhD thesis, California Institute of Technology (2011).

  138. 138.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

    ADS  Google Scholar 

  139. 139.

    Kasliwal, M. M. et al. Discovery of a new photometric sub-class of faint and fast classical novae. Astrophys. J. 735, 94 (2011).

    ADS  Google Scholar 

  140. 140.

    Vinkó, J. et al. A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? Astrophys. J. 798, 12 (2015).

    ADS  Google Scholar 

  141. 141.

    Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).

    ADS  Google Scholar 

  142. 142.

    Rest, A. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat. Astron. 2, 307–311 (2018).

    ADS  Google Scholar 

  143. 143.

    Ho, A. Y. Q. et al. The death throes of a stripped massive star: an eruptive mass-loss history encoded in pre-explosion emission, a rapidly rising luminous transient, and a broad-lined Ic supernova SN2018gep. Preprint at (2019).

  144. 144.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS  Google Scholar 

  145. 145.

    Gall, E. E. E. et al. A comparative study of type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astron. Astrophys. 582, A3 (2015).

    Google Scholar 

  146. 146.

    Taddia, F. et al. Long-rising type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astron. Astrophys. 588, A5 (2016).

    Google Scholar 

  147. 147.

    Arcavi, I. et al. Rapidly rising transients in the supernova — superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    ADS  Google Scholar 

  148. 148.

    Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

    ADS  Google Scholar 

  149. 149.

    Modjaz, M. et al. Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. Astrophys. J. 645, L21–L24 (2006).

    ADS  Google Scholar 

  150. 150.

    Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P. & Pritchard, T. SOUSA: the Swift Optical/Ultraviolet Supernova Archive. Astron. Space Sci. 354, 89–96 (2014).

    ADS  Google Scholar 

  151. 151.

    Arcavi, I. et al. Constraints on the progenitor of SN 2016gkg from its shock-cooling light curve. Astrophys. J. 837, L2 (2017).

    ADS  Google Scholar 

Download references


We thank E. Nakar, T. Piro, F. Taddia, S. Valenti and E. Waxman for valuable comments. M.M. is supported by the NSF CAREER award AST-1352405, by the NSF award AST-1413260 and by a Faculty Fellowship from the Humboldt Foundation. C.P.G. acknowledges support from EU/FP7-ERC grant no. [615929]. I.A. acknowledges support from the Israel Science Foundation (grant number 2108/18).

Author information



Corresponding author

Correspondence to Maryam Modjaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Modjaz, M., Gutiérrez, C.P. & Arcavi, I. New regimes in the observation of core-collapse supernovae. Nat Astron 3, 717–724 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing