A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds

Subjects

Abstract

With no analogues in the Solar System, the discovery of thousands of exoplanets with masses and radii intermediate between Earth and Neptune was one of the big surprises of exoplanet science. These super-Earths and sub-Neptunes probably represent the most common outcome of planet formation1,2. Mass and radius measurements indicate a diversity in bulk composition much wider than for gas giants3; however, direct spectroscopic detections of molecular absorption and constraints on the gas mixing ratios have largely remained limited to planets more massive than Neptune4,5,6. Here we analyse a combined Hubble/Spitzer Space Telescope dataset of 12 transits and 20 eclipses of the sub-Neptune exoplanet GJ 3470 b, whose mass of 12.6 M places it near the halfway point between previously studied Neptune-like exoplanets (22–23 M)5,6,7 and exoplanets known to have rocky densities (7 M)8. Obtained over many years, our dataset provides a robust detection of water absorption (>5σ) and a thermal emission detection from the lowest irradiated planet to date. We reveal a low-metallicity, hydrogen-dominated atmosphere similar to that of a gas giant, but strongly depleted in methane gas. The low metallicity (O/H = 0.2–18.0) sets important constraints on the potential planet formation processes at low masses as well as the subsequent accretion of solids. The low methane abundance indicates that methane is destroyed much more efficiently than previously predicted, suggesting that the CH4/CO transition curve has to be revisited for close-in planets. Finally, we also find a sharp drop in the cloud opacity at 2–3 µm, characteristic of Mie scattering, which enables narrow constraints on the cloud particle size and makes GJ 3470 b a key target for mid-infrared characterization with the James Webb Space Telescope.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Planet mass versus equilibrium temperature for known low-mass planets with signal-to-noise ratio >3 mass measurements.
Fig. 2: Transmission spectrum of GJ 3470 b.
Fig. 3: Thermal emission spectrum of GJ 3470 b.
Fig. 4: Constraints on gas composition and cloud properties in the atmosphere of GJ 3470 b.

Data availability

The data presented in this work are publicly available in the Mikulski Archive for Space Telescope (https://archive.stsci.edu/hst/) and the Spitzer Heritage Archive (https://sha.ipac.caltech.edu/applications/Spitzer/SHA/).

References

  1. 1.

    Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Fulton, B. J. & Petigura, E. A. The California-Kepler Survey VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the planet radius gap. Astron. J. 156, 264 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505, 69–72 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Fraine, J. et al. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513, 526–529 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Wakeford, H. R. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Stassun, K. G., Collins, K. A. & Gaudi, B. S. Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. Astron. J. 153, 136 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Ment, K. et al. A second planet with an Earth-like composition orbiting the nearby M dwarf LHS 1140. Astron. J. 157, 32 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Ehrenreich, D. et al. Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope. Astron. Astrophys. 570, A89 (2014).

    Article  Google Scholar 

  10. 10.

    Knutson, H. A. et al. Hubble Space Telescope near-IR transmission spectroscopy of the super-Earth HD 97658b. Astrophys. J. 794, 155 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Nascimbeni, V. et al. The blue sky of GJ3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry. Astron. Astrophys. 559, 32 (2013).

    Article  Google Scholar 

  13. 13.

    Chen, G. et al. The GTC exoplanet transit spectroscopy survey—V. A spectrally-resolved Rayleigh scattering slope in GJ 3470b. Astron. Astrophys. 600, A138 (2017).

    Article  Google Scholar 

  14. 14.

    Wakeford, H. R. et al. High-temperature condensate clouds in super-hot Jupiter atmospheres. Mon. Not. R. Astron. Soc. 464, 4247–4254 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Miller-Ricci Kempton, E., Zahnle, K. & Fortney, J. J. The atmospheric chemistry of GJ 1214b: photochemistry and clouds. Astrophys. J. 745, 3 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Moses, J. I. et al. Compositional diversity in the atmospheres of hot neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Morley, C. V. et al. Forward and inverse modeling of the emission and transmission spectrum of GJ 436b: investigating metal enrichment, tidal heating, and clouds. Astron. J. 153, 86 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V. & Stevenson, K. B. Water, high-altitude condensates, and possible methane depletion in the atmosphere of the warm super-neptune WASP-107b. Astrophys. J. Lett. 858, L6 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Lee, E. J. & Chiang, E. To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres. Astrophys. J. 811, 41 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Kosiarek, M. R. Bright opportunities for atmospheric characterization of small planets: masses and radii of K2-3 b, c, d and GJ3470 b from radial velocity measurements and Spitzer transits. Astron. J. 157, 97 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    Moses, J. I., Madhusudhan, N., Visscher, C. & Freedman, R. S. Chemical consequences of the C/O ratio on hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. Astrophys. J. 763, 25 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Line, M. R., Vasisht, G., Chen, P., Angerhausen, D. & Yung, Y. L. Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: a methane-poor GJ436b? Astrophys. J. 738, 32 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron 2, 303–306 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    He, C. et al. Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: particle color and size distribution. Astrophys. J. 856, L3 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Ginzburg, S., Schlichting, H. E. & Sari, R. Super-Earth atmospheres: self-consistent gas accretion and retention. Astrophys. J. 825, 29 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Mayor, M. et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Preprint at https://arxiv.org/abs/1109.2497 (2011).

  27. 27.

    Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Rogers, L. A. & Seager, S. Three possible origins for the gas layer on GJ 1214b. Astrophys. J. 716, 1208–1216 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Mousis, O. et al. Determination of the minimum masses of heavy elements in the envelopes of jupiter and saturn. Astrophys. J. 696, 1348–1354 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Inamdar, N. K. & Schlichting, H. E. Stealing the gas: giant impacts and the large diversity in exoplanet densities. Astrophys. J. 817, L13 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

    Article  Google Scholar 

  32. 32.

    Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Tsiaras, A. et al. A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458b. Astrophys. J. 832, 202 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Tsiaras, A. et al. A population study of gaseous exoplanets. Astron. J. 155, 156 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Demory, B.-O. et al. Spitzer observations of GJ 3470 b: a very low-density Neptune-size planet orbiting a metal-rich M dwarf. Astrophys. J. 768, 154 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Kammer, J. A. et al. Spitzer secondary eclipse observations of five cool gas giant planets and empirical trends in cool planet emission spectra. Astrophys. J. 810, 118 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Knutson, H. A. et al. 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    Lewis, N. K. et al. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Benneke, B. et al. Spitzer observations confirm and rescue the habitable-zone super-Earth K2-18b for future characterization. Astrophys. J. 834, 187 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Berta, Z. K. et al. The flat transmission spectrum of the super-Earth GJ1214b from Wide Field Camera 3 on the Hubble Space Telescope. Astrophys. J. 747, 35 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Sing, D. K. et al. Determining atmospheric conditions at the terminator of the hot-Jupiter HD 209458b. Astrophys. J. 686, 667 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Nikolov, N. et al. Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b. Mon. Not. R. Astron. Soc. 437, 46–66 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Wakeford, H. R. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Lothringer, J. D. et al. An HST/STIS optical transmission spectrum of warm Neptune GJ 436b. Astron. J. 155, 66 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Kreidberg, L. Batman: basic transit model calculation in Python. Publ. Astron. Soc. Pacif. 127, 1161 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171 (2002).

    ADS  Article  Google Scholar 

  49. 49.

    Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  Google Scholar 

  50. 50.

    Parviainen, H. & Aigrain, S. ldtk: limb darkening toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).

    ADS  Google Scholar 

  51. 51.

    Biddle, L. I. et al. Warm ice giant GJ 3470b—II. Revised planetary and stellar parameters from optical to near-infrared transit photometry. Mon. Not. R. Astron. Soc. 443, 1810–1820 (2014).

    ADS  Article  Google Scholar 

  52. 52.

    Demory, B.-O. et al. Spitzer observations of GJ 3470 b: a very low-density Neptune-size planet orbiting a metal-rich M dwarf. Astrophys. J. 768, 154 (2013).

    ADS  Article  Google Scholar 

  53. 53.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  54. 54.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    MathSciNet  Article  Google Scholar 

  55. 55.

    Sing, D. K., Vidal‐Madjar, A., Désert, J. ‐M., Lecavelier des Etangs, A. & Ballester, G. Hubble Space Telescope STIS optical transit transmission spectra of the hot Jupiter HD 209458b. Astrophys. J. 686, 658–666 (2008).

    ADS  Article  Google Scholar 

  56. 56.

    Dragomir, D. et al. Rayleigh scattering in the atmosphere of the warm exo-Neptune GJ 3470b. Astrophys. J. 814, 102 (2015).

    ADS  Article  Google Scholar 

  57. 57.

    Fisher, C. & Heng, K. Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy. Mon. Not. R. Astron. Soc. 481, 4698–4727 (2018).

    ADS  Article  Google Scholar 

  58. 58.

    Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    ADS  Article  Google Scholar 

  59. 59.

    Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505, 66–68 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).

  61. 61.

    Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres: I. Derivation. Astron. Astrophys. 562, A133 (2014).

    ADS  Article  Google Scholar 

  62. 62.

    Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).

    ADS  Article  Google Scholar 

  63. 63.

    Gao, P. & Benneke, B. Microphysics of KCl and ZnS clouds on GJ 1214 b. Astrophys. J. 863, 165 (2018).

    ADS  Article  Google Scholar 

  64. 64.

    Morley, C. V. et al. Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214b. Astrophys. J. 775, 33 (2013).

    ADS  Article  Google Scholar 

  65. 65.

    Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    ADS  Article  Google Scholar 

  66. 66.

    Line, M. R., Knutson, H., Deming, D., Wilkins, A. & Desert, J.-M. A near-infrared transmission spectrum for the warm Saturn HAT-P-12b. Astrophys. J. 778, 183 (2013).

    ADS  Article  Google Scholar 

  67. 67.

    Tennyson, J. & Yurchenko, S. N. ExoMol: molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 425, 21–33 (2012).

    ADS  Article  Google Scholar 

  68. 68.

    Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS  Article  Google Scholar 

  69. 69.

    Swain, M. R., Line, M. R. & Deroo, P. On the detection of molecules in the atmosphere of HD 189733b using HST NICMOS transmission spectroscopy. Astrophys. J. 784, 133 (2014).

    ADS  Article  Google Scholar 

  70. 70.

    Waldmann, I. P. et al. τ-REx. II. Retrieval of emission spectra. Astrophys. J. 813, 13 (2015).

    ADS  Article  Google Scholar 

  71. 71.

    Line, M. R. et al. No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. Astron. J. 152, 203 (2016).

    ADS  Article  Google Scholar 

  72. 72.

    Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).

    ADS  Article  Google Scholar 

  73. 73.

    Moses, J. I. et al. On the composition of young, directly imaged giant planets. Astrophys. J. 829, 66 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Bonfils, X. et al. A hot Uranus transiting the nearby M dwarf GJ 3470. Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry. Astron. Astrophys. 546, A27 (2012).

    Article  Google Scholar 

  75. 75.

    Crossfield, I. J. M., Barman, T., Hansen, B. M. S. & Howard, A. W. Warm ice giant GJ 3470b: I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere. Astron. Astrophys. 559, A33 (2013).

    ADS  Article  Google Scholar 

  76. 76.

    Dragomir, D. et al. Rayleigh scattering in the atmosphere of the warm exo-Neptune GJ 3470b. Astrophys. J. 814, 102 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on observations with the NASA/ESA HST, obtained at the Space Telescope Science Institute (STScI) operated by AURA, Inc. We received support for the analysis by NASA through grants under the HST-GO-13665 programme (PI B.B.). This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA (PIs H.A.K. and J.-M.D.). B.B. further acknowledges financial support by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Fond de Recherche Québécois—Nature et Technologie (FRQNT; Québec). J.M. acknowledges support from NASA grant NNX16AC64G, the Amsterdam Academic Alliance (AAA) Program, and the European Research Council (ERC) under the programme Exo-Atmos (grant agreement number 679633). D. Dragomir is a NASA Hubble Fellow and acknowledges support provided by NASA through Hubble Fellowship grant HST-HF2-51372.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy for NASA, under contract NAS5-26555.

Author information

Affiliations

Authors

Contributions

B.B. led the data analysis of the HST and Spitzer transit data, with contributions from J.L., I.W. and H.A.K. L.K. and J.-M.D. performed independent analyses of the Spitzer transits and found consistent results. H.A.K. led the data analysis of the Spitzer secondary eclipse observations. J.M. provided the chemical kinetics atmosphere models. B.B. and C.M. provided the self-consistent atmospheric models and the atmospheric retrieval analysis. B.B. wrote the manuscript, with contributions from B.J.F., H.A.K. and J.M. All authors discussed the results and commented on the draft.

Corresponding author

Correspondence to Björn Benneke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figs. 1–17 and Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benneke, B., Knutson, H.A., Lothringer, J. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat Astron 3, 813–821 (2019). https://doi.org/10.1038/s41550-019-0800-5

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing