Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational evidence for bar formation in disk galaxies via cluster–cluster interaction

Abstract

Bars are elongated structures that extend from the centre of galaxies, and about one-third of disk galaxies are known to possess bars1,2,3. These bars are thought to form either through a physical process inherent in galaxies4,5,6, or through an external process such as galaxy–galaxy interactions7,8,9. However, there are other plausible mechanisms of bar formation that still need to be observationally tested. Here we present the observational evidence that bars can form via cluster–cluster interaction10. We examined 105 galaxy clusters at redshift 0.015 < z < 0.060 that are selected from the Sloan Digital Sky Survey data, and identified 16 interacting clusters. We find that the barred disk-dominated galaxy fraction is about 1.5 times higher in interacting clusters than in clusters with no clear signs of ongoing interaction (42% versus 27%). Our result indicates that bars can form through a large-scale violent phenomenon, and cluster–cluster interaction should be considered an important mechanism of bar formation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of the surface number density of galaxies around clusters, and the velocity and spatial distributions for the cluster member galaxies.
Fig. 2: Images of barred and non-barred disk galaxies classified in this study.

Sloan Digital Sky Survey (SDSS)

Fig. 3: Barred galaxies are more abundant in interacting clusters.

Data availability

The data used in this work can be downloaded from the public data archive of SDSS (http://skyserver.sdss.org) and MPA-JHU catalogue at the website of https://www.sdss.org/dr14/spectro/galaxy_mpajhu/. The other data used for the plots within this paper are available from the corresponding author on reasonable request.

References

  1. Jogee, S. et al. Bar evolution over the last 8 billion years: a constant fraction of strong bars in the GEMS survey. Astrophys. J. Lett. 615, 105–108 (2004).

    ADS  Article  Google Scholar 

  2. Marinova, I. et al. Barred galaxies in the Abell 901/2 supercluster with stages. Astrophys. J. 698, 1639–1658 (2009).

    ADS  Article  Google Scholar 

  3. Lee, G.-H., Park, C., Lee, M. G. & Choi, Y.-Y. Dependence of barred galaxy fraction on galaxy properties and environment. Astrophys. J. 745, 125 (2012).

    ADS  Article  Google Scholar 

  4. Athanassoula, E. & Sellwood, J. A. Bi-symmetric instabilities of the Kuz’min/Toomre disc. Mon. Not. R. Astron. Soc. 221, 213–232 (1986).

    ADS  Article  Google Scholar 

  5. Kwak, S., Kim, W.-T., Rey, S.-C. & Kim, S. Origin of non-axisymmetric features of Virgo cluster early-type dwarf galaxies. I. Bar formation and recurrent buckling. Astrophys. J. 839, 24 (2017).

    ADS  Article  Google Scholar 

  6. Zana, T. et al. External versus internal triggers of bar formation in cosmological zoom-in simulations. Mon. Not. R. Astron. Soc. 473, 2608–2621 (2018).

    ADS  Article  Google Scholar 

  7. Miwa, T. & Noguchi, M. Dynamical properties of tidally induced galactic bars. Astrophys. J. 499, 149–166 (1998).

    ADS  Article  Google Scholar 

  8. Berentzen, I., Athanassoula, E., Heller, C. H. & Fricke, K. J. The regeneration of stellar bars by tidal interactions: numerical simulations of fly-by encounters. Mon. Not. R. Astron. Soc. 347, 220–236 (2004).

    ADS  Article  Google Scholar 

  9. Łokas, E. L. et al. Adventures of a tidally induced bar. Mon. Not. R. Astron. Soc. 445, 1339–1350 (2014).

    ADS  Article  Google Scholar 

  10. Bekki, K. Group-cluster merging and the formation of starburst galaxies. Astrophys. J. Lett. 510, 15–19 (1999).

    ADS  Article  Google Scholar 

  11. Barazza, F. D. et al. Frequency and properties of bars in cluster and field galaxies at intermediate redshifts. Astron. Astrophys. 497, 713–728 (2009).

    ADS  Article  Google Scholar 

  12. Aguerri, J. A. L., Méndez-Abreu, J. & Corsini, E. M. The population of barred galaxies in the local universe. I. Detection and characterisation of bars. Astron. Astrophys. 495, 491–504 (2009).

    ADS  Article  Google Scholar 

  13. Shen, J. & Sellwood, J. A. The destruction of bars by central mass concentrations. Astrophys. J. 604, 614–631 (2004).

    ADS  Article  Google Scholar 

  14. Athanassoula, E., Lambert, J. C. & Dehnen, W. Can bars be destroyed by a central mass concentration? I. Simulations. Mon. Not. R. Astron. Soc. 363, 496–508 (2005).

    ADS  Article  Google Scholar 

  15. Bournaud, F., Combes, F. & Semelin, B. The lifetime of galactic bars: central mass concentrations and gravity torques. Mon. Not. R. Astron. Soc. Lett. 364, L18–L22 (2005).

    ADS  Article  Google Scholar 

  16. Fukugita, M., Hogan, C. J. & Peebles, P. J. E. The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998).

    ADS  Article  Google Scholar 

  17. Im, M. et al. The DEEP groth strip survey. X. Number density and luminosity function of field E/S0 galaxies at z < 1. Astrophys. J. 571, 136–171 (2002).

    ADS  Article  Google Scholar 

  18. Lee, J. & Komatsu, E. Bullet cluster: a challenge to LambdaCDM cosmology. Astrophys. J. 718, 60–65 (2010).

    ADS  Article  Google Scholar 

  19. Vijayaraghavan, R. & Ricker, P. M. Pre-processing and post-processing in group-cluster mergers. Mon. Not. R. Astron. Soc. 435, 2713–2735 (2013).

    ADS  Article  Google Scholar 

  20. Zhang, C., Yu, Q. & Lu, Y. A baryonic effect on the merger timescale of galaxy clusters. Astrophys. J. 820, 85 (2016).

    ADS  Article  Google Scholar 

  21. Łokas, E. L. et al. Tidally induced bars of galaxies in clusters. Astrophys. J. 826, 227 (2016).

    ADS  Article  Google Scholar 

  22. Lang, M., Holley-Bockelmann, K. & Sinha, M. Bar formation from galaxy flybys. Astrophys. J. Lett. 790, 33 (2014).

    ADS  Article  Google Scholar 

  23. Casteels, K. R. V. et al. Galaxy zoo: quantifying morphological indicators of galaxy interaction. Mon. Not. R. Astron. Soc. 429, 1051–1065 (2013).

    ADS  Article  Google Scholar 

  24. Lin, Y., Cervantes Sodi, B., Li, C., Wang, L. & Wang, E. The environment of barred galaxies in the low-redshift universe. Astrophys. J. 796, 98 (2014).

    ADS  Article  Google Scholar 

  25. Lee, G.-H. et al. Do bars trigger activity in galactic nuclei? Astrophys. J. 750, 141 (2012).

    ADS  Article  Google Scholar 

  26. Masters, K. L. et al. Galaxy zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies. Mon. Not. R. Astron. Soc. 424, 2180–2192 (2012).

    ADS  Article  Google Scholar 

  27. Davoust, E. & Contini, T. Starbursts in barred spiral galaxies. VI. HI observations and the K-band Tully-Fisher relation. Astron. Astrophys. 416, 515–527 (2004).

    ADS  Article  Google Scholar 

  28. Berentzen, I., Heller, C. H., Shlosman, I. & Fricke, K. J. Gas-driven evolution of stellar orbits in barred galaxies. Mon. Not. R. Astron. Soc. 300, 49–63 (1998).

    ADS  Article  Google Scholar 

  29. Villa-Vargas, J., Shlosman, I. & Heller, C. Dark matter halos and evolution of bars in disk galaxies: varying gas fraction and gas spatial resolution. Astrophys. J. 719, 1470–1480 (2010).

    ADS  Article  Google Scholar 

  30. Wetzel, A. R., Schulz, A. E., Holz, D. E. & Warren, M. S. Close pairs as proxies for galaxy cluster mergers. Astrophys. J. 683, 1–11 (2008).

    ADS  Article  Google Scholar 

  31. Demarco, R. et al. Spectroscopic confirmation of three red-sequence selected galaxy clusters at z = 0.87, 1.16, and 1.21 from the SpARCS Survey. Astrophys. J. 711, 1185–1197 (2010).

    ADS  Article  Google Scholar 

  32. Kim, J.-W. et al. Discovery of a supercluster at z ~ 0.91 and testing the ΛCDM cosmological model. Astrophys. J. Lett. 821, 10 (2016).

    ADS  Article  Google Scholar 

  33. Cole, S., Lacey, C. G., Baugh, C. M. & Frenk, C. S. Hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 319, 168–204 (2000).

    ADS  Article  Google Scholar 

  34. Lagos, Cd. P. et al. Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon-dominated regions. Mon. Not. R. Astron. Soc. 426, 2142–2165 (2012).

    ADS  Article  Google Scholar 

  35. Bahcall, N. A. & Oh, S. P. The peculiar velocity function of galaxy clusters. Astrophys. J. Lett. 462, 49 (1996).

    ADS  Article  Google Scholar 

  36. Thompson, R. & Nagamine, K. Pairwise velocities of dark matter haloes: a test for the Λ cold dark matter model using the bullet cluster. Mon. Not. R. Astron. Soc. 419, 3560–3570 (2012).

    ADS  Article  Google Scholar 

  37. Hwang, H. S. & Lee, M. G. Galaxy activity in merging binary galaxy clusters. Mon. Not. R. Astron. Soc. 397, 2111–2122 (2009).

    ADS  Article  Google Scholar 

  38. Shim, H. et al. Merging galaxy cluster A2255 in mid-infrared. Astrophys. J. 727, 14 (2011).

    ADS  Article  Google Scholar 

  39. Hou, A. et al. Substructure in the most massive GEEC groups: field-like populations in dynamically active groups. Mon. Not. R. Astron. Soc. 421, 3594–3611 (2012).

    ADS  Article  Google Scholar 

  40. Dressler, A. & Shectman, S. A. Evidence for substructure in rich clusters of galaxies from radial-velocity measurements. Astron. J. 95, 985–995 (1988).

    ADS  Article  Google Scholar 

  41. Einasto, M. et al. Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution. Astron. Astrophys. 540, A123 (2012).

    Article  Google Scholar 

  42. Pinkney, J., Roettiger, K., Burns, J. O. & Bird, C. M. Evaluation of statistical tests for substructure in clusters of galaxies. Astrophys. J. Suppl. Ser. 104, 1 (1996).

    ADS  Article  Google Scholar 

  43. Jedrzejewski, R. I. CCD surface photometry of elliptical galaxies. I:Observations, reduction and results. Mon. Not. R. Astron. Soc. 226, 747–768 (1987).

    ADS  Article  Google Scholar 

  44. Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W. A catalog of bulge + disk decompositions and updated photometry for 1.12 million galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 196, 11 (2011).

    ADS  Article  Google Scholar 

  45. Menéndez-Delmestre, K., Sheth, K., Schinnerer, E., Jarrett, T. H. & Scoville, N. Z. A near-infrared study of 2MASS bars in local galaxies: an anchor for high-redshift studies. Astrophys. J. 657, 790–804 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank W.-T. Kim and S. Kwak for helpful comments and discussions. This work was supported by the National Research Foundation of Korea grant number 2017R1A3A3001362, funded by the Korea government. G.-H.L. was supported by the KASI-Arizona Joint Postdoctoral Fellowship Program jointly managed by the Korea Astronomy and Space Science Institute and the Steward Observatory, at the University of Arizona.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. led the analysis. Y.Y. and M.I. led the interpretation and wrote the paper. G.-H.L. and G.L. contributed to the classification of bar galaxies. G.-H.L. provided scientific input on the issues related to the morphology classification. S.-K.L. contributed to the cluster search. All authors contributed to the discussion of the results, reviewed the paper and provided input on the manuscript.

Corresponding author

Correspondence to Myungshin Im.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Supplementary Table 1, Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, Y., Im, M., Lee, GH. et al. Observational evidence for bar formation in disk galaxies via cluster–cluster interaction. Nat Astron 3, 844–850 (2019). https://doi.org/10.1038/s41550-019-0799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0799-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing