Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing supermassive black hole binaries with pulsar timing

The detection of a gravitational-wave background at nanohertz frequencies can tell us if and how supermassive black holes merge, and inform our knowledge of galaxy merger rates and supermassive black hole masses. All we have to do is time pulsars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Astrophysics manifesting in the gravitational-wave background strain spectrum.

S. Burke-Spolaor (West Virginia University)

Fig. 2: Time to detection of different models of the gravitational-wave background (GWB).

adapted from ref. 8, AAS


  1. 1.

    Kormendy, J. & Ho, L. C. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    Milosavljevic, M. & Merritt, D. Astrophys. J. 596, 860–878 (2003).

    ADS  Article  Google Scholar 

  4. 4.

    Khan, F. M., Holley-Bockelmann, K., Berczik, P. & Just, A. Astrophys. J. 773, 100–106 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Sesana, A. Mon. Not. R. Astron. Soc. 433, L1–L5 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Detweiler, S. Astrophys. J. 234, 1100–1104 (1979).

    ADS  Article  Google Scholar 

  7. 7.

    Hellings, R. W. & Downs, G. S. Astrophys. J. Lett. 265, L39–L42 (1983).

    ADS  Article  Google Scholar 

  8. 8.

    Taylor, S. R. et al. Astrophys. J. Lett. 819, L6 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Phinney, E. S. Preprint at (2001).

  10. 10.

    Arzoumanian, Z. et al. Astrophys. J. 821, 13 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Ryu, T. et al. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Bonetti, M., Sesana, A., Barausse, E. & Haardt, F. Mon. Not. R. Astron. Soc. 477, 2599–2612 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    McWilliams, S. T., Ostriker, J. P. & Pretorius, F. Astrophys. J. 789, 156 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Siemens, X., Ellis, J., Jenet, F. & Romano, J. D. Class. Quantum Grav. 30, 224015 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Mingarelli, C. M. F. et al. Nat. Astron. 1, 886–892 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Mingarelli, C. M. F., Sidery, T., Mandel, I. & Vecchio, A. Phys. Rev. D 88, 062005 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Burke-Spolaor, S. Preprint at (2015).

Download references


I thank J. Lazio, D. Foreman-Mackey and X. Siemens for useful discussions. I also thank S. Taylor and S. Burke-Spolaor for permission to edit and reproduce some of their figures. The Flatiron Institute is funded by the Simons Foundation.

Author information



Corresponding author

Correspondence to Chiara M. F. Mingarelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mingarelli, C.M.F. Probing supermassive black hole binaries with pulsar timing. Nat Astron 3, 8–10 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing