Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Observing black holes spin

Abstract

The spin of a black hole retains the memory of how the black hole grew, and can be a potent source of energy for powering relativistic jets. To understand the diagnostic power and astrophysical significance of black hole spin, however, we must first devise observational methods for measuring spin. Here, I describe the current state of black hole spin measurements, highlighting the progress made by X-ray astronomers, as well as the current excitement of gravitational wave- and radio astronomy-based techniques. Today’s spin measurements are already constraining models for the growth of supermassive black holes and giving new insights into the dynamics of stellar core collapse, as well as hinting at the physics of relativistic jet production. Future X-ray, radio and gravitational wave observatories will transform black hole spin into a precision tool for astrophysics and test fundamental theories of gravity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of some special orbits in the equatorial plane of a Kerr black hole as a function of spin parameter.
Fig. 2: Cartoon of the inner regions of a geometrically thin accretion disk showing the transition in disk structure at the ISCO.
Fig. 3: Results on the spins of SMBHs in AGNs using the X-ray reflection method.
Fig. 4: Constraints on black hole spin for GW151226.

Similar content being viewed by others

References

  1. Israel, W. Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967).

    ADS  Google Scholar 

  2. Carter, B. Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971).

    ADS  Google Scholar 

  3. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    ADS  Google Scholar 

  4. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS  Google Scholar 

  5. Volonteri, M., Madau, P., Quataert, E. & Rees, M. J. The distribution and cosmic evolution of massive black hole spins. Astrophys. J. 620, 69–77 (2005).

    ADS  Google Scholar 

  6. Miller, M. C. & Miller, J. M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 548, 1–34 (2015).

    ADS  MathSciNet  Google Scholar 

  7. Kerr, R. P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  8. Penrose, R. & Floyd, R. M. Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229, 177–179 (1971).

    ADS  Google Scholar 

  9. Bambi, C. Spinning super-massive objects in galactic nuclei up to a * > 1. Europhys. Lett. 94, 50002 (2011).

    ADS  Google Scholar 

  10. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  11. Reynolds, C. S. & Fabian, A. C. Broad iron-Kα emission lines as a diagnostic of black hole spin. Astrophys. J. 675, 1048–1056 (2008).

    ADS  Google Scholar 

  12. Shafee, R. et al. Three-dimensional simulations of magnetized thin accretion disks around black holes: stress in the plunging region. Astrophys. J. Lett. 687, L25 (2008).

    ADS  Google Scholar 

  13. Bardeen, J. M., Press, W. H. & Teukolsky, S. A. Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972).

    ADS  Google Scholar 

  14. Fabian, A. C. et al. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 451, 4375–4383 (2015).

    ADS  Google Scholar 

  15. George, I. M. & Fabian, A. C. X-ray reflection from cold matter in active galactic nuclei and X-ray binaries. Mon. Not. R. Astron. Soc. 249, 352–367 (1991).

    ADS  Google Scholar 

  16. Fabian, A. C., Rees, M. J., Stella, L. & White, N. E. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 238, 729–736 (1989).

    ADS  Google Scholar 

  17. Laor, A. Line profiles from a disk around a rotating black hole. Astrophys. J. 376, 90–94 (1991).

    ADS  Google Scholar 

  18. Brenneman, L. W. & Reynolds, C. S. Constraining black hole spin via X-ray spectroscopy. Astrophys. J. 652, 1028–1043 (2006).

    ADS  Google Scholar 

  19. Reynolds, C. S. et al. A Monte Carlo Markov chain based investigation of black hole spin in the active galaxy NGC 3783. Astrophys. J. 755, 88 (2012).

    ADS  Google Scholar 

  20. Miller, L., Turner, T. J. & Reeves, J. N. The absorption-dominated model for the X-ray spectra of typeI active galaxies: MCG-6-30-15. Mon. Not. R. Astron. Soc. 399, L69–L73 (2009).

    ADS  Google Scholar 

  21. Reynolds, C. S. Constraints on Compton-thick winds from black hole accretion disks: Can We see the inner disk? Astrophys. J. Lett. 759, L15 (2012).

    ADS  Google Scholar 

  22. Risaliti, G. et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013).

    ADS  Google Scholar 

  23. Taylor, C. & Reynolds, C. S. Exploring the effects of disk thickness on the black hole reflection spectrum. Astrophys. J. 855, 120 (2018).

    ADS  Google Scholar 

  24. Tanaka, Y. et al. Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Nature 375, 659–661 (1995).

    ADS  Google Scholar 

  25. Miller, J. M. et al. Evidence of spin and energy extraction in a galactic black hole candidate: the XMM-Newton/EPIC-pn spectrum of XTE J1650-500. Astrophys. J. Lett. 570, L69–L73 (2002).

    ADS  Google Scholar 

  26. Reynolds, C. S. & Nowak, M. A. Fluorescent iron lines as a probe of astrophysical black hole systems. Phys. Rep. 377, 389–466 (2003).

    ADS  Google Scholar 

  27. Miller, J. M. Relativistic X-ray lines from the inner accretion disks around black holes. Annu. Rev. Astron. Astrophys. 45, 441–479 (2007).

    ADS  Google Scholar 

  28. Walton, D. J., Nardini, E., Fabian, A. C., Gallo, L. C. & Reis, R. C. Suzaku observations of ‘bare’ active galactic nuclei. Mon. Not. R. Astron. Soc. 428, 2901–2920 (2013).

    ADS  Google Scholar 

  29. Xu, Y. et al. Evidence for relativistic disk reflection in the Seyfert 1h galaxy/ULIRG IRAS 05189-2524 observed by NuSTAR and XMM-Newton. Astrophys. J. 837, 21 (2017).

    ADS  Google Scholar 

  30. Ghosh, R., Dewangan, G. C., Mallick, L. & Raychaudhuri, B. Broad-band spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342. Mon. Not. R. Astron. Soc. 479, 2464–2475 (2018).

    ADS  Google Scholar 

  31. Walton, D. J. et al. Disentangling the complex broad-band X-ray spectrum of IRAS 13197-1627 with NuSTAR, XMM-Newton and Suzaku. Mon. Not. R. Astron. Soc. 473, 4377–4391 (2018).

    ADS  Google Scholar 

  32. Sun, S. et al. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506. Mon. Not. R. Astron. Soc. 478, 1900–1910 (2018).

    ADS  Google Scholar 

  33. Reynolds, C. S. Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. 183, 277–294 (2014).

    ADS  Google Scholar 

  34. Vasudevan, R. V. et al. A selection effect boosting the contribution from rapidly spinning black holes to the cosmic X-ray background. Mon. Not. R. Astron. Soc. 458, 2012–2023 (2016).

    ADS  Google Scholar 

  35. Brenneman, L. W. et al. The spin of the supermassive black hole in NGC 3783. Astrophys. J. 736, 103 (2011).

    ADS  Google Scholar 

  36. Gandhi, P. et al. Gaia DR2 distances and peculiar velocities for galactic black hole transients. Preprint at https://arxiv.org/abs/1804.11349 (2018).

  37. Miller, J. M., Reynolds, C. S., Fabian, A. C., Miniutti, G. & Gallo, L. C. Stellar-mass black hole spin constraints from disk reflection and continuum modeling. Astrophys. J. 697, 900–912 (2009).

    ADS  Google Scholar 

  38. Novikov, I. D. & Thorne, K. S. in Black Holes (Les Astres Occlus) Dewitt, C. & Dewitt, B. S. (eds) 343–450 (Gordon and Breach, New York, 1973).

  39. Zhang, S. N., Cui, W. & Chen, W. Black hole spin in X-ray binaries: observational consequences. Astrophys. J. Lett. 482, L155–L158 (1997).

    ADS  Google Scholar 

  40. Davis, S. W. & Hubeny, I. A grid of relativistic, non-LTE accretion disk models for spectral fitting of black hole binaries. Astrophys. J. Suppl. Ser. 164, 530–535 (2006).

    ADS  Google Scholar 

  41. Orosz, J. A. et al. Dynamical evidence for a black hole in the microquasar XTE J1550-564. Astrophys. J. 568, 845–861 (2002).

    ADS  Google Scholar 

  42. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).

    ADS  Google Scholar 

  43. Shafee, R. et al. Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. Astrophys. J. Lett. 636, L113–L116 (2006).

    ADS  Google Scholar 

  44. McClintock, J. E. et al. The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518–539 (2006).

    ADS  Google Scholar 

  45. Gou, L. et al. The extreme spin of the black hole in Cygnus X-1. Astrophys. J. 742, 85 (2011).

    ADS  Google Scholar 

  46. McClintock, J. E., Narayan, R. & Steiner, J. F. Black hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci. Rev. 183, 295–322 (2014).

    ADS  Google Scholar 

  47. Hubeny, I., Blaes, O., Krolik, J. H. & Agol, E. Non-LTE models and theoretical spectra of accretion disks in active galactic nuclei. IV. Effects of Compton scattering and metal opacities. Astrophys. J. 559, 680–702 (2001).

    ADS  Google Scholar 

  48. Lawrence, A. Quasar viscosity crisis. Nat. Astron. 2, 102–103 (2018).

    ADS  Google Scholar 

  49. Czerny, B., Hryniewicz, K., Nikołajuk, M. & Sądowski, A. Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1. Mon. Not. R. Astron. Soc. 415, 2942–2952 (2011).

    ADS  Google Scholar 

  50. Done, C., Jin, C., Middleton, M. & Ward, M. A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies. Mon. Not. R. Astron. Soc. 434, 1955–1963 (2013).

    ADS  Google Scholar 

  51. Capellupo, D. M., Wafflard-Fernandez, G. & Haggard, D. A comparison of two methods for estimating black hole spin in active galactic nuclei. Astrophys. J. Lett. 836, L8 (2017).

    ADS  Google Scholar 

  52. Piotrovich, M. Y., Gnedin, Y. N., Natsvlishvili, T. M. & Buliga, S. D. Constraints on spin of a supermassive black hole in quasars with big blue bump. Astrophys. Space Sci. 362, 231 (2017).

    ADS  Google Scholar 

  53. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Google Scholar 

  54. Ajith, P. et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Phys. Rev. Lett. 106, 241101 (2011).

    ADS  Google Scholar 

  55. Schmidt, P., Ohme, F. & Hannam, M. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Phys. Rev. D 91, 024043 (2015).

    ADS  Google Scholar 

  56. Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).

    ADS  Google Scholar 

  57. Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017).

    ADS  Google Scholar 

  58. Abbott, B. P. et al. GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).

    ADS  Google Scholar 

  59. Abbott, B. P. et al. Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys. Rev. X 6, 041014 (2016).

    Google Scholar 

  60. Detweiler, S. Black holes and gravitational waves. III — The resonant frequencies of rotating holes. Astrophys. J. 239, 292–295 (1980).

    ADS  Google Scholar 

  61. Baibhav, V., Berti, E., Cardoso, V. & Khanna, G. Black hole spectroscopy: aystematic errors and ringdown energy estimates. Phys. Rev. D 97, 044048 (2018).

    ADS  Google Scholar 

  62. Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Ion-supported tori and the origin of radio jets. Nature 295, 17–21 (1982).

    ADS  Google Scholar 

  63. Narayan, R., Yi, I. & Mahadevan, R. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature 374, 623–625 (1995).

    ADS  Google Scholar 

  64. Falcke, H. & Markoff, S. B. Toward the event horizon — the supermassive black hole in the Galactic Center. Class. Quantum Gravity 30, 244003 (2013).

    ADS  MATH  Google Scholar 

  65. Goddi, C. et al. BlackHoleCam: fundamental physics of the Galactic Center. Int. J. Mod. Phys. D 26, 1730001–1730239 (2017).

    ADS  Google Scholar 

  66. Falcke, H., Melia, F. & Agol, E. Viewing the shadow of the black hole at the Galactic Center. Astrophys. J. Lett. 528, L13–L16 (2000).

    ADS  Google Scholar 

  67. Doeleman, S. S. et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 455, 78–80 (2008).

    ADS  Google Scholar 

  68. Fish, V. L. et al. 1.3 mm wavelength VLBI of Sagittarius A*: detection of time-variable emission on event horizon scales. Astrophys. J. Lett. 727, L36 (2011).

    ADS  Google Scholar 

  69. Gralla, S. E., Lupsasca, A. & Strominger, A. Observational signature of high spin at the Event Horizon Telescope. Mon. Not. R. Astron. Soc. 475, 3829–3853 (2018).

    ADS  Google Scholar 

  70. Broderick, A. E., Fish, V. L., Doeleman, S. S. & Loeb, A. Evidence for low black hole spin and physically motivated accretion models from millimeter-VLBI observations of Sagittarius A*. Astrophys. J. 735, 110 (2011).

    ADS  Google Scholar 

  71. Broderick, A. E. et al. Modeling seven years of Event Horizon Telescope observations with radiatively inefficient accretion flow models. Astrophys. J. 820, 137 (2016).

    ADS  Google Scholar 

  72. Medeiros, L. et al. GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*. Astrophys. J. 856, 163 (2018).

    ADS  Google Scholar 

  73. Schödel, R. et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694–696 (2002).

    ADS  Google Scholar 

  74. Ghez, A. M. et al. Stellar orbits around the Galactic Center black hole. Astrophys. J. 620, 744–757 (2005).

    ADS  Google Scholar 

  75. Ghez, A. M. et al. Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).

    ADS  Google Scholar 

  76. Waisberg, I. et al. What stellar orbit is needed to measure the spin of the Galactic Centre black hole from astrometric data? Mon. Not. R. Astron. Soc. 476, 3600–3610 (2018).

    ADS  Google Scholar 

  77. Eisenhauer, F. et al. GRAVITY: getting to the event horizon of Sgr A*. Proc. SPIE 7013, 70132A (2008).

    Google Scholar 

  78. Gravity Collaboration et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic Centre massive black hole. Astron. Astrophys. 615, L15 (2018).

    ADS  Google Scholar 

  79. Sesana, A., Barausse, E., Dotti, M. & Rossi, E. M. Linking the spin evolution of massive black holes to galaxy kinematics. Astrophys. J. 794, 104 (2014).

    ADS  Google Scholar 

  80. Fiacconi, D., Sijacki, D. & Pringle, J. E. Galactic nuclei evolution with spinning black holes: method and implementation. Mon. Not. R. Astron. Soc 477, 3807–3835 (2018).

    ADS  Google Scholar 

  81. Miller, J. M., Miller, M. C. & Reynolds, C. S. The angular momenta of neutron stars and black holes as a window on supernovae. Astrophys. J. Lett. 731, L5 (2011).

    ADS  Google Scholar 

  82. Hotokezaka, K. & Piran, T. Implications of the low binary black hole aligned spins observed by LIGO. Astrophys. J. 842, 111 (2017).

    ADS  Google Scholar 

  83. Stone, N. C., Küpper, A. H. W. & Ostriker, J. P. Formation of massive black holes in galactic nuclei: runaway tidal encounters. Mon. Not. R. Astron. Soc. 467, 4180–4199 (2017).

    ADS  Google Scholar 

  84. Daly, R. A. Estimates of black hole spin properties of 55 sources. Mon. Not. R. Astron. Soc. 414, 1253–1262 (2011).

    ADS  Google Scholar 

  85. Daly, R. A. & Sprinkle, T. B. Black hole spin properties of 130 AGN. Mon. Not. R. Astron. Soc. 438, 3233–3242 (2014).

    ADS  Google Scholar 

  86. Mikhailov, A. G. & Gnedin, Y. N. Determination of the spins of supermassive black holes in FR I and FR II radio galaxies. Astron. Rep. 62, 1–8 (2018).

    ADS  Google Scholar 

  87. Chartas, G. et al. Measuring the innermost stable circular orbits of supermassive black holes. Astrophys. J. 837, 26 (2017).

    ADS  Google Scholar 

  88. Reynolds, C. S., Young, A. J., Begelman, M. C. & Fabian, A. C. X-ray iron line reverberation from black hole accretion disks. Astrophys. J. 514, 164–179 (1999).

    ADS  Google Scholar 

  89. Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540–542 (2009).

    ADS  Google Scholar 

  90. Zoghbi, A., Fabian, A. C., Reynolds, C. S. & Cackett, E. M. Relativistic iron K X-ray reverberation in NGC 4151. Mon. Not. R. Astron. Soc. 422, 129–134 (2012).

    ADS  Google Scholar 

  91. Kara, E. et al. Discovery of high-frequency iron K lags in Ark 564 and Mrk 335. Mon. Not. R. Astron. Soc. 434, 1129–1137 (2013).

    ADS  Google Scholar 

  92. Cackett, E. M. et al. Modelling the broad Fe Kα reverberation in the AGN NGC 4151. Mon. Not. R. Astron. Soc. 438, 2980–2994 (2014).

    ADS  Google Scholar 

  93. Cui, W., Zhang, S. N. & Chen, W. Evidence for frame dragging around spinning black holes in X-ray binaries. Astrophys. J. Lett. 492, L53–L57 (1998).

    ADS  Google Scholar 

  94. Abramowicz, M. A. & Kluźniak, W. A precise determination of black hole spin in GRO J1655-40. Astron. Astrophys. 374, L19–L20 (2001).

    ADS  Google Scholar 

  95. Ingram, A., Done, C. & Fragile, P. C. Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession. Mon. Not. R. Astron. Soc. 397, L101–L105 (2009).

    ADS  Google Scholar 

  96. Motta, S. E. et al. Black hole spin measurements through the relativistic precession model: XTE J1550-564. Mon. Not. R. Astron. Soc. 439, L65–L69 (2014).

    ADS  Google Scholar 

  97. Fragile, P. C., Blaes, O. M., Anninos, P. & Salmonson, J. D. Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. Astrophys. J. 668, 417–429 (2007).

    ADS  Google Scholar 

  98. Arzoumanian, Z. et al. The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background. Astrophys. J. 821, 13 (2016).

    ADS  Google Scholar 

  99. Bogdanović, T., Reynolds, C. S. & Miller, M. C. Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. Lett. 661, L147–L150 (2007).

    ADS  Google Scholar 

  100. Liu, K., Wex, N., Kramer, M., Cordes, J. M. & Lazio, T. J. W. Prospects for probing the spacetime of Sgr A* with pulsars. Astrophys. J. 747, 1 (2012).

    ADS  Google Scholar 

  101. Keane, E. et al. A cosmic census of radio pulsars with the SKA. Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 40 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Reynolds.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, C.S. Observing black holes spin. Nat Astron 3, 41–47 (2019). https://doi.org/10.1038/s41550-018-0665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0665-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing