Detailed polarization measurements of the prompt emission of five gamma-ray bursts

Abstract

Gamma-ray bursts (GRBs) are the strongest explosions in the Universe since the Big Bang. They are believed to be produced either in the formation of black holes at the end of massive star evolution1,2,3 or the merging of compact objects4. Spectral and timing properties of GRBs suggest that the observed bright gamma-rays are produced in the most relativistic jets in the Universe4; however, the physical properties (especially the structure and magnetic topologies) of the jets are still not well known, despite several decades of studies. It is widely believed that precise measurements of the polarization properties of GRBs should provide crucial information on the highly relativistic jets5. As a result, there have been many reports of GRB polarization measurements with diverse results (see ref. 6); however, many such measurements suffer from substantial uncertainties, most of which are systematic (ref. 7 and the references therein). After the first successful measurements by the Gamma-Ray Burst Polarimeter (GAP) and Compton Spectrometer and Imager (COSI) instruments8,9,10, here we report a statistically meaningful sample of precise polarization measurements, obtained with the dedicated GRB polarimeter POLAR onboard China’s Tiangong-2 space laboratory. Our results suggest that the gamma-ray emission is at most polarized at a level lower than some popular models have predicted, although our results also show intrapulse evolution of the polarization angle. This indicates that the low polarization degrees could be due to an evolving polarization angle during a GRB.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Measured and best-fitting simulated modulation curves for all five GRBs and the second time interval of GRB 170114A.
Fig. 2: Posterior distributions of the polarization parameters for the five GRBs and the second time intervals of GRB 170114A.
Fig. 3: Cumulative probability functions of the polarization degree for the studied GRBs in this sample.

Data availability

All data that support the plots within this paper and other findings of this study are available from the POLAR Collaboration (merlin.kole@unige.ch) upon reasonable request.

References

  1. 1.

    Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    Iwamoto, K. et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 395, 672–674 (1998).

    ADS  Article  Google Scholar 

  3. 3.

    MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262–289 (1999).

    ADS  Article  Google Scholar 

  4. 4.

    Gehrels, N. & Razzaque, S. Gamma-ray bursts in the Swift–Fermi era. Front. Phys. 8, 661–678 (2013).

    Article  Google Scholar 

  5. 5.

    Toma, K. et al. Statistical properties of gamma-ray burst polarization. Astrophys. J. 698, 1042–1054 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Covino, S. & Götz, D. Polarization of prompt and afterglow emission of gamma-ray bursts. Astron. Astrophys. Trans. 29, 205–239 (2016).

    ADS  Google Scholar 

  7. 7.

    McConnel, M. High energy polarimetry of prompt GRB emission. New Astr. Rev. 76, 1–21 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Lowell, A. W. et al. Polarimetric analysis of the long duration gamma-ray burst GRB 160530A with the balloon borne Compton Spectrometer and Imager. Astrophys. J. Lett. 848, 119–129 (2017).

    Article  Google Scholar 

  9. 9.

    Yonetoku, D. et al. Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization. Astrophys. J. Lett. 758, L1 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Yonetoku, D. et al. Detection of gamma-ray polarization in prompt emission of GRB 100826A. Astrophys. J. Lett. 743, L30 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Produit, N. et al. Design and construction of the POLAR detector. Nucl. Instrum. Methods Phys. Res. A 877, 259–268 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Li, Z. H. et al. In-orbit instrument performance study and calibration for POLAR polarization measurements. Nucl. Instrum. Methods Phys. Res. A 900, 8–24 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Kole, M. et al. Instrument performance and simulation verification of the POLAR detector. Nucl. Instrum. Methods Phys. Res. A 872, 28–40 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Koshut, T. M. et al. T 90 as a measurement of the duration of GRBs. 186th AAS Meeting of the Bulletin of the American Astronomical Society 886 (Conference Series Volume 27, American Astronomical Society, 1995).

  15. 15.

    Maier, D., Tenzer, C. & Santangelo, A. Point and interval estimation on the degree and the angle of polarization: a Bayesian approach. Publ. Astron. Soc. Pac. 126, 459–468 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Westfold, K. C. The polarization of synchrotron radiation. Astrophys. J. 130, 241–258 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    McMaster, W. H. Matrix representation of polarization. Rev. Mod. Phys. 33, 8–28 (1961).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Lazzati, D., Rossi, E., Ghisellini, G. & Rees, M. J. Compton drag as a mechanism for very high linear polarization in gamma-ray bursts. Mon. Not. R. Astron. Soc. 347, L1–L5 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    Granot, J. The most probable cause for the high gamma-ray polarization in GRB 021206. Astrophys. J. Lett. 596, L17–L21 (2003).

    ADS  Article  Google Scholar 

  20. 20.

    Lan, M. X., Wu, X. F. & Dai, Z. G. Gamma-ray burst optical afterglows with two-component jets: polarization evolution revisited. Astrophys. J. 860, 44–51 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Rossi, E. M., Lazzati, D., Salmonson, J. D. & Ghisellini, G. The polarization of afterglow emission reveals gamma-ray bursts jet structure. Mon. Not. R. Astron. Soc. 354, 86–100 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    Gill, R. & Granot, J. Afterglow imaging and polarization of misaligned structured GRB jets and cocoons: breaking the degeneracy in GRB 170817A. Mon. Not. R. Astron. Soc. 478, 4128–4141 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Rees, M. J. & Meszaros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93–L96 (1994).

    ADS  Article  Google Scholar 

  24. 24.

    Paczynski, B. & Xu, G. Neutrino bursts from gamma-ray bursts. Astrophys. J. 427, 708–713 (1994).

    ADS  Article  Google Scholar 

  25. 25.

    Mészáros, P. & Rees, M. J. Steep slopes and preferred breaks in gamma-ray burst spectra: the role of photospheres and comptonization. Astrophys. J. 530, 292–298 (2000).

    ADS  Article  Google Scholar 

  26. 26.

    Rees, M. J. & Mészáros, P. Dissipative photosphere models of gamma-ray bursts and X-ray flashes. Astrophys. J. 628, 847–852 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    Zhang, B. & Yan, H. The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90–113 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Lundman, C., Vurm, I. & Beloborodov, A. M. Polarization of gamma-ray bursts in the dissipative photosphere model. Astrophys. J. 856, 145 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Deng, W., Zhang, H., Zhang, B. & Li, H. Collision-induced magnetic reconnection and a unified interpretation of polarization properties of GRBs and blazars. Astrophys. J. Lett. 821, L12–L19 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Xiong, S. L. et al. Overview of the GRB observation by POLAR. In 35th International Cosmic Ray Conference 640 (Proceedings of Science, 2017).

  31. 31.

    Band, D. et al. BATSE observations of gamma-ray burst spectra. I—spectral diversity. Astrophys. J. 413, 281–292 (1993).

    ADS  Article  Google Scholar 

  32. 32.

    Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).

    ADS  Article  Google Scholar 

  33. 33.

    GCN Circular: GRB 170114A: Fermi GBM Detection (2015); https://gcn.gsfc.nasa.gov/other/170114A.gcn3

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Basic Research Program (973 Program) of China (grant number 2014CB845800); Joint Research Fund in Astronomy, under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences (grant number U1631242); National Natural Science Foundation of China (grant numbers 11503028 and 11403028); Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB23040400); Swiss Space Office of the State Secretariat for Education, Research and Innovation (ESA PRODEX Programme); National Science Center of Poland (grant number 2015/17/N/ST9/03556); and Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant number 2014009). We also thank J. M. Burgess of MPE, Garching, Germany, for providing the energy spectra for GRB 170114A.

Author information

Affiliations

Authors

Contributions

T.-W.B., T.Batsch, T.Bernasconi, F.C., J.-Y.C., Y.-W.D., N.G., W.H., M.K., H.-C.L., L.L., Z.-H.L., J.-T.L., X.L., R.M., S.O., M.P., N.P., D.R., H.-L.S., L.-M.S., J.-C.S., J.S., T.T., R.-J.W., X.Wen, B.-B.W., X.Wu, H.-L.X., S.-L.X., L.-Y.Z., L.Z., S.-N.Z., X.-F.Z., Y.-J.Z. and A.Z. contributed to the development of the mission concept and/or construction and testing of POLAR. M.K., Z.-H.L., N.P., J.-C.S., Y.-H.W., S.-L.X. and S.-N.Z. were involved in the presented analysis. Z.-G.D., M.-X.L. and X.-F.W. contributed to the theoretical discussions. The manuscript was produced by M.K., Z.-H.L., J.-C.S., Y.-H.W. and S.-N.Z. The principal investigators of the POLAR collaboration are S.-N.Z., M.P. and X.Wu.

Corresponding authors

Correspondence to Shuang-Nan Zhang or Merlin Kole.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–7, Supplementary References 1–20

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, SN., Kole, M., Bao, TW. et al. Detailed polarization measurements of the prompt emission of five gamma-ray bursts. Nat Astron 3, 258–264 (2019). https://doi.org/10.1038/s41550-018-0664-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing