A new class of flares from accreting supermassive black holes

Abstract

Accreting supermassive black holes (SMBHs) can exhibit variable emission across the electromagnetic spectrum and over a broad range of timescales. The variability of active galactic nuclei (AGNs) in the ultraviolet and optical is usually at the few tens of per cent level over timescales of hours to weeks1. Recently, rare, more dramatic changes to the emission from accreting SMBHs have been observed, including tidal disruption events2,3,4,5, ‘changing look’ AGNs6,7,8,9 and other extreme variability objects10,11. The physics behind the ‘re-ignition’, enhancement and ‘shut-down’ of accretion onto SMBHs is not entirely understood. Here we present a rapid increase in ultraviolet–optical emission in the centre of a nearby galaxy, marking the onset of sudden increased accretion onto a SMBH. The optical spectrum of this flare, dubbed AT 2017bgt, exhibits a mix of emission features. Some are typical of luminous, unobscured AGNs, but others are likely driven by Bowen fluorescence—robustly linked here with high-velocity gas in the vicinity of the accreting SMBH. The spectral features and increased ultraviolet flux show little evolution over a period of at least 14 months. This disfavours the tidal disruption of a star as their origin, and instead suggests a longer-term event of intensified accretion. Together with two other recently reported events with similar properties, we define a new class of SMBH-related flares. This has important implications for the classification of different types of enhanced accretion onto SMBHs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The persistence of X-ray and UV continuum, and of line emission in AT 2017bgt.
Fig. 2: Optical spectrum of AT 2017bgt compared with known unobscured AGNs.
Fig. 3: AT 2017bgt as part of a new class of SMBH-related flares in galaxy nuclei.
Fig. 4: Broad emission features near He ii λ4,686 in AT 2017bgt, and similar objects, compared with other nuclear transients.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. All of our spectra are publicly available on the Weizmann Interactive Supernova data REPository (WISeREP)69. The data used to prepare Supplementary Fig. 1 are available from the ASAS-SN Light Curve Server (https://asas-sn.osu.edu/).

References

  1. 1.

    Caplar, N., Lilly, S. J. & Trakhtenbrot, B. Optical variability of AGN in the PTF/iPTF survey. Astrophys. J. 834, 111 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Arcavi, I. et al. A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. Astrophys. J. 793, 38 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Holoien, T. W. et al. ASASSN-14ae: a tidal disruption event at 200 Mpc. Mon. Not. R. Astron. Soc. 445, 3263–3277 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Holoien, T. W.-S. et al. Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Mon. Not. R. Astron. Soc. 455, 2918–2935 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    LaMassa, S. M. et al. The discovery of the first ‘changing look’ quasar: new insights into the physics and phenomenology of active galactic nuclei. Astrophys. J. 800, 144 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    MacLeod, C. L. et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 457, 389–404 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Ricci, C. et al. IC 751: a new changing look agn discovered by NuSTAR. Astrophys. J. 820, 5 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Runnoe, J. C. et al. Now you see it, now you don’t: the disappearing central engine of the quasar J1011+5442. Mon. Not. R. Astron. Soc. 455, 1691–1701 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Lawrence, A. et al. Slow-blue nuclear hypervariables in PanSTARRS-1. Mon. Not. R. Astron. Soc. 463, 296–331 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Graham, M. J. et al. Understanding extreme quasar optical variability with CRTS I. Major AGN flares. Mon. Not. R. Astron. Soc. 470, 4112–4132 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Kiyota, S. et al. ASASSN-17cu and ASASSN-17cv: discovery of two probable supernovae. Astronomer's Telegram 10113 (2017).

  14. 14.

    Lusso, E. & Risaliti, G. The tight relation between X-ray and ultraviolet luminosity of quasars. Astrophys. J. 819, 154 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Vanden Berk, D. E. et al. Composite quasar spectra from the Sloan digital sky survey. Astron. J. 122, 549–564 (2001).

    ADS  Article  Google Scholar 

  16. 16.

    Bennert, N., Falcke, H., Schulz, H., Wilson, A. S. & Wills, B. J. Size and structure of the narrow-line region of quasars. Astrophys. J. 574, L105–L109 (2002).

    ADS  Article  Google Scholar 

  17. 17.

    Mor, R., Netzer, H. & Elitzur, M. Dusty structure around type-I active galactic nuclei: clumpy torus narrow-line region and near-nucleus hot dust. Astrophys. J. 705, 298–313 (2009).

    ADS  Article  Google Scholar 

  18. 18.

    Gezari, S. et al. PS1-10jh continues to follow the fallback accretion rate of a tidally disrupted star. Astrophys. J. 815, L5 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Brown, J. S. et al. The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. Mon. Not. R. Astron. Soc. 473, 1130–1144 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Brown, J. S. et al. The long term evolution of ASASSN-14li. Mon. Not. R. Astron. Soc. 446, 4904–4916 (2017).

    ADS  Google Scholar 

  21. 21.

    Bowen, I. S. The origin of the nebular lines and the structure of the planetary nebulae. Astrophys. J. 67, 1 (1928).

    ADS  Article  Google Scholar 

  22. 22.

    Weymann, R. J. & Williams, R. E. The Bowen fluorescence mechanism in planetary nebulae and the nuclei of Seyfert galaxies. Astrophys. J. 157, 1201 (1969).

    ADS  Article  Google Scholar 

  23. 23.

    Schachter, J., Filippenko, A. V. & Kahn, S. M. Bowen fluorescence in Scorpius X-1. Astrophys. J. 340, 1049 (1989).

    ADS  Article  Google Scholar 

  24. 24.

    Kastner, S. O. & Bhatia, A. K. The Bowen fluorescence lines: overview and re-analysis of the observations. Mon. Not. R. Astron. Soc. 279, 1137–1156 (1996).

    ADS  Article  Google Scholar 

  25. 25.

    Williams, R. E. & Weymann, R. J. Proceedings of the conference on Seyfert galaxies and related objects: 35. Calculated line intensities for models of Seyfert galaxy nuclei. Astron. J. 73, 895 (1968).

    ADS  Article  Google Scholar 

  26. 26.

    Schachter, J., Filippenko, A. V. & Kahn, S. M. Bowen fluorescence in a sample of Seyfert nuclei. Astrophys. J. 362, 74 (1990).

    ADS  Article  Google Scholar 

  27. 27.

    Netzer, H., Elitzur, M. & Ferland, G. J. Bowen fluorescence and He ii lines in active galaxies and gaseous nebulae. Astrophys. J. 299, 752 (1985).

    ADS  Article  Google Scholar 

  28. 28.

    Shemmer, O. et al. Near-Infrared spectroscopy of high-redshift active galactic nuclei. I. A metallicityaccretion rate relationship. Astrophys. J. 614, 547–557 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Tadhunter, C., Spence, R., Rose, M., Mullaney, J. & Crowther, P. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237. Nat. Astron. 1, 0061 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Wyrzykowski, L. et al. OGLE-IV real-time transient search. Acta Astron. 64, 197–232 (2014).

    ADS  Google Scholar 

  31. 31.

    Gromadzki, M., Hamanowicz, A. & Wyrzykowski, L. VLT/FORS2 spectroscopic classification of an unusual nuclear transient OGLE17aaj. Astronomer’s Telegram 9977 (2017).

  32. 32.

    Wyrzykowski, L. et al. OGLE-IV transient search report 25 September 2017 part 1. Astronomer's Telegram 10776 (2017).

  33. 33.

    Blanchard, P. K. et al. PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. Astrophys. J. 843, 106 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Kankare, E. et al. A population of highly energetic transient events in the centres of active galaxies. Nat. Astron. 1, 865–871 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Stanek, K. Z. ASAS-SN transient discovery report for 2017-02-22. Transient Name Server Discovery Report, No. 2017–223 (2017).

  36. 36.

    Kochanek, C. S. et al. The all-sky automated survey for supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    Gehrels, N. et al. The Swift gamma ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  Article  Google Scholar 

  39. 39.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    ADS  Article  Google Scholar 

  40. 40.

    Wyder, T. K. et al. The ultraviolet galaxy luminosity function in the local universe from GALEX data. Astrophys. J. 619, L15 (2005).

    ADS  Article  Google Scholar 

  41. 41.

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    ADS  Article  Google Scholar 

  42. 42.

    Tacchella, S. et al. The SINS/zC-SINF survey of z ~ 2 galaxy kinematics: rest-frame morphology, structure, and colors from near-infrared Hubble space telescope imaging. Astrophys. J. 802, 101 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Voges, W. et al. IAU Circular No. 7432 (ed. Green, D. W. E.) (Central Bureau for Astronomical Telegrams, International Astronomical Union, 2000).

  44. 44.

    Ranalli, P., Comastri, A. & Setti, G. The 2–10 keV luminosity as a star formation rate indicator. Astron. Astrophys. 399, 39–50 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    Helfand, D. J., White, R. L. & Becker, R. H. The last of FIRST: the final catalog and source identifications. Astrophys. J. 801, 26 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Yun, M. S., Reddy, N. A. & Condon, J. Radio properties of infraredselected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001).

    ADS  Article  Google Scholar 

  47. 47.

    Hopkins, A. M. et al. Star formation rate indicators in the Sloan digital sky survey. Astrophys. J. 599, 971–991 (2003).

    ADS  Article  Google Scholar 

  48. 48.

    Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    ADS  Article  Google Scholar 

  49. 49.

    Padovani, P. The faint radio sky: radio astronomy becomes mainstream. Astron. Astrophys. Rev. 24, 1–61 (2016).

    Article  Google Scholar 

  50. 50.

    Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    ADS  Article  Google Scholar 

  51. 51.

    Salim, S. et al. UV star formation rates in the local universe. Astrophys. J. Suppl. 173, 267–292 (2007).

    ADS  Article  Google Scholar 

  52. 52.

    Just, D. W. et al. The X-ray properties of the most luminous quasars from the Sloan digital sky survey. Astrophys. J. 665, 1004–1022 (2007).

    ADS  Article  Google Scholar 

  53. 53.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000 (2003).

    ADS  Article  Google Scholar 

  54. 54.

    Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    Stern, D. et al. Mid-infrared selection of active galactic nuclei with the Wide-field Infrared Survey Explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753, 30 (2012).

    ADS  Article  Google Scholar 

  56. 56.

    Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    ADS  Article  Google Scholar 

  57. 57.

    Trakhtenbrot, B. et al. BAT AGN spectroscopic survey (BASS) VI. The ΓXL/LEdd relation. Mon. Not. R. Astron. Soc. 470, 800–814 (2017).

    ADS  Article  Google Scholar 

  58. 58.

    Fabian, A. C. et al. Long XMM observation of the narrow-line Seyfert 1 galaxy IRAS 13224-3809: rapid variability, high spin and a soft lag. Mon. Not. R. Astron. Soc. 429, 2917–2923 (2013).

    ADS  Article  Google Scholar 

  59. 59.

    Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495. Nature 459, 540–542 (2009).

    ADS  Article  Google Scholar 

  60. 60.

    Ricci, C. et al. Suzaku observation of IRAS 00521-7054, a peculiar type-II AGN with a very broad feature at 6 keV. Astrophys. J. 795, 147 (2014).

    ADS  Article  Google Scholar 

  61. 61.

    Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    ADS  Article  Google Scholar 

  62. 62.

    Madsen, K. K. et al. Calibration of the NuSTAR high-energy focusing X-ray telescope. Astrophys. J. Suppl. 220, 8 (2015).

    ADS  Article  Google Scholar 

  63. 63.

    Gendreau, K. C., Arzoumanian, Z. & Okajima, T. The Neutron star Interior Composition ExploreR (NICER): an explorer mission of opportunity for soft X-ray timing spectroscopy. Proc. SPIE 8443, 844313 (2012).

  64. 64.

    Gierliński, M. & Done, C. Is the soft excess in active galactic nuclei real? Mon. Not. R. Astron. Soc. 349, L7–L11 (2004).

    ADS  Article  Google Scholar 

  65. 65.

    Crummy, J., Fabian, A. C., Gallo, L. & Ross, R. R. An explanation for the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 365, 1067–1081 (2005).

    ADS  Article  Google Scholar 

  66. 66.

    Winter, L. M., Veilleux, S., McKernan, B. & Kallman, T. R. The Swift burst alert telescope detected Seyfert 1 galaxies: X-ray broadband properties and warm absorbers. Astrophys. J. 745, 107 (2012).

    ADS  Article  Google Scholar 

  67. 67.

    Ricci, C. et al. BAT AGN spectroscopic survey—V. X-ray properties of the Swift/BAT 70-month AGN catalog. Astrophys. J. Suppl. 233, 17 (2017).

    ADS  Article  Google Scholar 

  68. 68.

    Brown, T. M. et al. Las Cumbres observatory global telescope network. Publ. Astron. Soc. Pac. 125, 1031–1055 (2013).

    ADS  Article  Google Scholar 

  69. 69.

    Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    ADS  Article  Google Scholar 

  70. 70.

    Trakhtenbrot, B. & Netzer, H. Black hole growth to z = 2—I. Improved virial methods for measuring M BH and L/L Edd. Mon. Not. R. Astron. Soc. 427, 3081–3102 (2012).

    ADS  Article  Google Scholar 

  71. 71.

    Kewley, L. J., Heisler, C. A., Dopita, M. A. & Lumsden, S. Optical classification of southern warm infrared galaxies. Astrophys. J. Suppl. 132, 37–71 (2001).

    ADS  Article  Google Scholar 

  72. 72.

    Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    ADS  Article  Google Scholar 

  73. 73.

    Schawinski, K. et al. Observational evidence for AGN feedback in early-type galaxies. Mon. Not. R. Astron. Soc. 382, 1415–1431 (2007).

    ADS  Article  Google Scholar 

  74. 74.

    Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emissionline spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5 (1981).

    ADS  Article  Google Scholar 

  75. 75.

    Peterson, B. M. et al. The size of the narrow-line-emitting region in the Seyfer 1 galaxy NGC 5548 from emission-line variability. Astrophys. J. 779, 109 (2013).

    ADS  Article  Google Scholar 

  76. 76.

    Simcoe, R. A. et al. FIRE: a near-infrared cross-dispersed echellette spectrometer for the Magellan telescopes. Proc. SPIE 7014, 70140U (2008).

    Article  Google Scholar 

  77. 77.

    Eikenberry, S. S. et al. FLAMINGOS-2: the facility near-infrared wide-field imager and multi-object spectrograph for Gemini. Proc. SPIE 5492, 1196–1207 (2004).

    ADS  Article  Google Scholar 

  78. 78.

    Glikman, E., Helfand, D. J. & White, R. L. A near-infrared spectral template for quasars. Astrophys. J. 640, 579–591 (2006).

    ADS  Article  Google Scholar 

  79. 79.

    Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169–185 (2004).

    ADS  Article  Google Scholar 

  80. 80.

    Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).

    ADS  Article  Google Scholar 

  81. 81.

    Netzer, H. et al. Star formation black hole growth and dusty tori in the most luminous AGNs at z = 2–3.5. Astrophys. J. 819, 123 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Kaspi, S. et al. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 533, 631–649 (2000).

    ADS  Article  Google Scholar 

  83. 83.

    Shen, Y. The mass of quasars. Bull. Astron. Soc. Ind. 41, 61–115 (2013).

    ADS  Google Scholar 

  84. 84.

    Peterson, B. M. Measuring the masses of supermassive black holes. Space Sci. Rev. 183, 253–275 (2014).

    ADS  Article  Google Scholar 

  85. 85.

    Mejía-Restrepo, J. E., Trakhtenbrot, B., Lira, P., Netzer, H. & Capellupo, D. M. Active galactic nuclei at z ~ 1.5 II. Black hole mass estimation by means of broad emission lines. Mon. Not. R. Astron. Soc. 460, 187–211 (2016).

    ADS  Article  Google Scholar 

  86. 86.

    Bentz, M. C. et al. The low-luminosity end of the radius-luminosity relationship for active galactic nuclei. Astrophys. J. 767, 149 (2013).

    ADS  Article  Google Scholar 

  87. 87.

    Kaspi, S. et al. The relationship between luminosity and broad-line region size in active galactic nuclei. Astrophys. J. 629, 61–71 (2005).

    ADS  Article  Google Scholar 

  88. 88.

    Pei, L. et al. Space telescope and optical reverberation mapping project. V. Optical spectroscopic campaign and emission-line analysis for NGC 5548. Astrophys. J. 837, 131 (2017).

    ADS  Article  Google Scholar 

  89. 89.

    Holoien, T. W.-S. et al. ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc. Mon. Not. R. Astron. Soc. 463, 3813–3828 (2016).

    ADS  Article  Google Scholar 

  90. 90.

    Blagorodnova, N. et al. iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. Astrophys. J. 844, 46 (2017).

    ADS  Article  Google Scholar 

  91. 91.

    Hung, T. et al. Revisiting optical tidal disruption events with iPTF16axa. Astrophys. J. 842, 29 (2017).

    ADS  Article  Google Scholar 

  92. 92.

    MacLeod, M., Guillochon, J. & Ramirez-Ruiz, E. The tidal disruption of giant stars and their contribution to the flaring supermassive black hole population. Astrophys. J. 757, 134 (2012).

    ADS  Article  Google Scholar 

  93. 93.

    Lin, D. et al. A luminous X-ray outburst from an intermediate-mass black hole in an offcentre star cluster. Nat. Astron. 2, 656–661 (2018).

    ADS  Article  Google Scholar 

  94. 94.

    Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

    ADS  Google Scholar 

  95. 95.

    Moriya, T. J., Tanaka, M., Morokuma, T. & Ohsuga, K. Superluminous transients at AGN centers from interaction between black hole disk winds and broad-line region clouds. Astrophys. J. 843, L19 (2017).

    ADS  Article  Google Scholar 

  96. 96.

    Netzer, H. & Marziani, P. The effect of radiation pressure on emission-line profiles and black holes mass determination in active galactic nuclei. Astrophys. J. 724, 318–328 (2010).

    ADS  Article  Google Scholar 

  97. 97.

    Campana, S. et al. Multiple tidal disruption flares in the active galaxy IC 3599. Astron. Astrophys. 581, A17 (2015).

    Article  Google Scholar 

  98. 98.

    Grupe, D., Komossa, S. & Saxton, R. IC 3599 did it again: a second outburst of the X-ray transient Seyfert 1.9 galaxy. Astrophys. J. 803, L28 (2015).

    ADS  Article  Google Scholar 

  99. 99.

    Metzger, B. D. & Stone, N. C. Periodic accretion-powered flares from colliding EMRIs as TDE imposters. Astrophys. J. 844, 75 (2017).

    ADS  Article  Google Scholar 

  100. 100.

    Farris, B. D., Duffell, P., MacFadyen, A. I. & Haiman, Z. Characteristic signatures in the thermal emission from accreting binary black holes. Mon. Not. R. Astron. Soc. 446, L36–L40 (2015).

    ADS  Article  Google Scholar 

  101. 101.

    Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge Univ. Press, Cambridge, 2002).

  102. 102.

    Netzer, H. The Physics and Evolution of Active Galactic Nuclei (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  103. 103.

    Stern, D. et al. A mid-IR selected changing-look quasar and physical scenarios for abrupt AGN fading. Astrophys. J. 864, 27 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

B.T. is a Zwicky Fellow. I.A. is an Einstein Fellow. E.K. is a Hubble Fellow. We thank N. Caplar, J. Guillochon, Z. Haiman, E. Lusso, and K. Schawinski for useful discussions. We thank C. Tadhunter for providing the spectrum of the F01004-2237 transient and his helpful comments. Part of this work was inspired by discussions within International Team #371, ‘Using Tidal Disruption Events to Study Super-Massive Black Holes’, hosted at the International Space Science Institute in Bern, Switzerland. We thank all the participants of the team meeting for their beneficial comments. Support for I.A. was provided by NASA through the Einstein Fellowship Program, grant PF6-170148. C.R. acknowledges support from the CONICYT + PAI Convocatoria Nacional subvencion a instalacion en la academia convocatoria a no 2017 PAI77170080. P.G.J. acknowledges support from European Research Council Consolidator Grant 647208. A. Horesh acknowledges support by the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation. G.H., D.A.H. and C.M. acknowledge support from NSF grant AST-1313484. M.B. acknowledges support from the Black Hole Initiative at Harvard University, which is funded by a grant from the John Templeton Foundation. G.L. acknowledges support from a Herchel Smith Research Fellowship of the University of Cambridge. Ł.W., M.G. and A. Hamanowicz acknowledge Polish National Science Centre grant OPUS no 2015/17/B/ST9/03167 to Ł.W. Research by D.J.S. is supported by NSF grants AST-1412504 and AST-1517649. E.Y.H. acknowledges the support provided by the National Science Foundation under Grant No. AST-1613472 and by the Florida Space Grant Consortium. This work makes use of observations from the Las Cumbres Observatory network. This publication also makes use of data products from the Wide-field Infrared Survey Explorer. WISE and NEOWISE are funded by the National Aeronautics and Space Administration.

This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR operations, software and calibration teams for support with the execution and analysis of these observations. This research made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA).

We thank the Swift, NuSTAR and NICER teams for scheduling and performing the target-of-opportunity observations presented here on short notice. The LRIS spectrum presented herein was obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. We recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

These results made use of the Discovery Channel Telescope (DCT) at Lowell Observatory. Lowell is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University and Yale University. The upgrade of the DeVeny optical spectrograph has been funded by a generous grant from John and Ginger Giovale.

The FLAMINGOS-2 spectrum was obtained at the Gemini Observatory under program GS-2017A-Q-33 (PI: Sand), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (USA), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and Ministério da Ciência, Tecnologia e Inovação (Brazil).

Author information

Affiliations

Authors

Contributions

B.T. and I.A. led the data collection, analysis and interpretation, as well as the manuscript preparation. C.R. performed the analysis and modelling of archival and new X-ray data. S.T. performed the morphological and SED modelling of the host galaxy. D.S., M.B., M.H., N.K. and G.B.L. took part in obtaining and calibrating the Palomar and Keck spectra. H.N. contributed to the identification and interpretation of the Bowen fluorescence spectral features. P.G.J. and A. Horesh contributed to the interpretation of multi-wavelength data and to pursuing follow-up observations. J.E.M.-R. contributed to the analysis of optical spectra. G.H., V.H. and C.M. contributed to collecting, calibrating and analysing the Las Cumbres Observatory and Swift/UVOT data. D.A.H. helped schedule and monitor the data from the Las Cumbres Observatory. Ł.W., M.G. and A. Hamanowicz contributed to NIR line identification and provided the optical spectrum of OGLE17aaj. S.B.C. provided the the DCT spectrum. D.J.S. provided the the Gemini-South/FLAMINGOS-2 NIR spectrum. E.Y.H., M.M.P. and T.R.D. provided the Magellan/FIRE NIR spectrum. E.K. contributed to the X-ray data analysis and interpretation. K.C.G., Z.A. and R.R. contributed to the NICER data acquisition and calibration.

Corresponding author

Correspondence to Benny Trakhtenbrot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1, Supplementary References 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trakhtenbrot, B., Arcavi, I., Ricci, C. et al. A new class of flares from accreting supermassive black holes. Nat Astron 3, 242–250 (2019). https://doi.org/10.1038/s41550-018-0661-3

Download citation

Further reading