The surface mineralogy of dwarf planet Ceres appears to be dominated by products of rock–fluid interactions, such as phyllosilicates—some of which are NH4-bearing—and carbonates1,2,3. Elemental concentrations derived from the inferred mineral mixing fractions, however, do not match measurements of H, C, K and Fe on Ceres4. A complicating factor in assessing Ceres’s unique surface composition is the secular accretion of asteroids typical of chondritic compositions. Here we show that Ceres’s mineral and elemental data can be explained by the presence of carbonaceous chondritic-like materials (~50–60 vol%), possibly due to infalling asteroids, admixed with aqueously altered endogenic materials that contain higher-than-chondritic concentrations of carbon. We find that Ceres’s surface may contain up to 20 wt% of carbon, which is more than five times higher than in carbonaceous chondrites. The coexistence of phyllosilicates, magnetite, carbonates and a high carbon content implies rock–water alteration played an important role in promoting widespread carbon chemistry. These findings unveil pathways for the synthesis of organic matter, with implications for their transport across the Solar System.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    De Sanctis, M. C. et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 528, 241–244 (2015).

  2. 2.

    Ammannito, E. et al. Distribution of phyllosilicates on the surface of Ceres. Science 353, aaf4279 (2016).

  3. 3.

    Carrozzo, F. G. et al. Nature, formation, and distribution of carbonates on Ceres. Sci. Adv. 4, e1701645 (2018).

  4. 4.

    Prettyman, T. H. et al. Extensive water ice within Ceres’ aqueously altered regolith: evidence from nuclear spectroscopy. Science 355, 55–59 (2017).

  5. 5.

    Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth. Planet. Sci. Lett. 476, 153–164 (2017).

  6. 6.

    Marchi, S. et al. The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016).

  7. 7.

    Castillo-Rogez, J. C. & McCord, T. B. Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010).

  8. 8.

    Bowling, T. et al. Post-impact thermal structure and cooling timescales of occator crater on asteroid 1 Ceres. Icarus https://doi.org/10.1016/j.icarus.2018.08.028 (2018).

  9. 9.

    Daly, R. T. & Schultz, P. H. Predictions for impactor contamination on Ceres based on hypervelocity impact experiments. Geophys. Res. Lett. 42, 7890–7898 (2015).

  10. 10.

    DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

  11. 11.

    McKinnon, W. B. Where did Ceres accrete? In Proc. Conf. Asteroids, Comets, Meteors 2012 abstr. 6475 (LPI, 2012). http://www.lpi.usra.edu/meetings/acm2012/pdf/6475.pdf

  12. 12.

    Kretke, K. A., Bottke, W. F., Levison, H. F. & Kring, D. A. Mixing of the asteroid belt due to the formation of the giant planets. In Proc. Conf. Accretion: Building New Worlds 2017 LPI contribution no. 2043, abstr. 2027 (LPI, 2017).

  13. 13.

    De Sanctis, M. C. et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536, 54–57 (2016).

  14. 14.

    De Sanctis, M. C. et al. Localized aliphatic organic material on the surface of Ceres. Science 355, 719–722 (2017).

  15. 15.

    Raponi, A. et al. Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres. Icarus https://doi.org/10.1016/j.icarus.2017.10.023 (2017).

  16. 16.

    Raponi, A. et al. Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus https://doi.org/10.1016/j.icarus.2018.02.001 (2018).

  17. 17.

    Kurokawa, H. et al. A Bayesian approach to deriving Ceres surface composition from Dawn VIR data: initial quantification of bright spot and typical dark material phases with this method. In 49th Lunar Planetary Sci. Conf. 2018 LPI contribution no. 2083, abstr. 1908 (LPI, 2018).

  18. 18.

    Howard, K. T., Alexander, C. M. O.’D., Schrader, D. L. & Dyl, K. A. Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochim. Cosmochim. Acta 149, 206–222 (2015).

  19. 19.

    King, A. J., Schofield, P. F., Howard, K. T. & Russell, S. S. Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim. Cosmochim. Acta 165, 148–160 (2015).

  20. 20.

    Castillo-Rogez, J. et al. Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci. 53, 1820–1843 (2018).

  21. 21.

    McSween, H. Y. Jr. et al. Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteorit. Planet. Sci. 53, 1793–1804 (2018).

  22. 22.

    Hendrix, A. R., Vilas, F. & Li, J.-Y. Ceres: sulfur deposits and graphitized carbon. Geophys. Res. Lett. 43, 8920–8927 (2016).

  23. 23.

    Prettyman T. H. et al. Elemental composition and mineralogy of Vesta and Ceres: distribution and origins of hydrogen-bearing species. Icarus https://doi.org/10.1016/j.icarus.2018.04.032 (2018).

  24. 24.

    Kaplan, H. H., Milliken, R. E. & Alexander, C. M. O’D. New constraints on the abundance and composition of organic matter on Ceres. Geophys. Res. Lett. 45, 5274–5282 (2018).

  25. 25.

    De Sanctis, M. C. et al. Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Mon. Not. R. Astron. Soc. 482, 2407–2421 (2019).

  26. 26.

    Mennella, V., Baratta, G. A., Esposito, A., Ferini, G. & Pendleton, Y. J. The effects of ion irradiation on the evolution of the carrier of the 3.4 micron interstellar absorption band. Astrophys. J. 587, 727–738 (2003).

  27. 27.

    Godard, M. et al. Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band. Astron. Astrophys. 529, A146 (2011).

  28. 28.

    Alexander, C. M. O.’D., Howard, K. T., Bowden, R. & Fogel, M. L. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 123, 244–260 (2013).

  29. 29.

    Schulte, M. & Shock, E. Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteorit. Planet. Sci. 39, 1577–1590 (2004).

  30. 30.

    Vinogradoff, V., Bernard, S., Le Guillou, C. & Remusat, L. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions. Icarus 305, 358–370 (2018).

  31. 31.

    Lodders, K. & Fegley, B. Jr The Planetary Scientist’s Companion (Oxford Univ. Press, Oxford, 1998).

  32. 32.

    Britt, D. T. & Consolmagno, G. J. Stony meteorite porosities and densities: a review of the data through 2001. Meteorit. Planet. Sci. 38, 1161–1180 (2003).

  33. 33.

    O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space. Sci. 103, 131–142 (2014).

  34. 34.

    Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. Capture of trans-neptunian planetesimals in the main asteroid belt. Astron. J. 152, 39 (2016).

  35. 35.

    Leinhardt, Z. M. & Stewart, S. T. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745, 79 (2012).

  36. 36.

    Marchi, S., Bottke, W. F., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth. Planet. Sci. Lett. 325, 27–38 (2012).

  37. 37.

    Day, J. M. D., Walker, R. J., Qin, L. & Rumble, D. III Late accretion as a natural consequence of planetary growth. Nat. Geosci. 5, 614–617 (2012).

  38. 38.

    Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690–693 (2012).

  39. 39.

    Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013).

  40. 40.

    Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013).

  41. 41.

    Ermakov, A. I. et al. Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the dawn spacecraft. J. Geophys. Res. Planets 122, 2267–2293 (2017).

  42. 42.

    Hapke, B. Theory of Reflectance and Emittance Spectroscopy 2nd edn (Cambridge Univ. Press, Cambridge, 2012).

  43. 43.

    Ciarniello, M. et al. Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astron. Astrophys. 598, A130 (2017).

  44. 44.

    Carli, C., Ciarniello, M., Capaccioni, F., Serventi, G. & Sgavetti, M. Spectral variability of plagioclase-mafic mixtures (2): investigation of the optical constant and retrieved mineral abundance dependence on particle size distribution. Icarus 235, 207–219 (2014).

  45. 45.

    Davidsson, B. J. R., Gutiérrez, P. J. & Rickman, H. Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra. Icarus 201, 335–357 (2009).

  46. 46.

    Ciarniello, M., Capaccioni, F. & Filacchione, G. A test of Hapke’s model by mean of Monte Carlo ray-tracing. Icarus 237, 293–305 (2014).

  47. 47.

    Schröder, S. E. et al. Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus 288, 201–225 (2017).

  48. 48.

    Mustard, J. F. & Pieters, C. M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 94, 13619–13634 (1989).

  49. 49.

    Prettyman, T. H. et al. Dawn’s gamma ray and neutron detector. Space Sci. Rev. 163, 371–459 (2011).

  50. 50.

    Alexander, C. M. O.’D. et al. The provenances of asteroids, and their contributions to the volatile inventory of the terrestrial planets. Science 337, 721–723 (2012).

  51. 51.

    Villarreal, M. N. et al. The dependence of the Cerean exosphere on solar energetic particle events. Astrophys. J. Lett. 838, L8 (2017).

  52. 52.

    Judge, D. L., McMullin, D. R. & Ogawa, H. S. Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum. J. Geophys. Res. 104, 28321–28324 (1999).

  53. 53.

    Mennella, V., Brucato, J., Colangeli, L., Palumbo., P. & Bond, C.-H. Formation in carbon grains by exposure to atomic hydrogen: the evolution of the carrier of the interstellar 3.4 micron band. Astrophys. J. 569, 531–540 (2002).

  54. 54.

    Takir, D. et al. Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteorit. Planet. Sci. 48, 1618–1637 (2013).

  55. 55.

    Zubko, V. G. et al. Optical constants of cosmic carbon analogue grains—I. Simulation of clustering by a modified continuous distribution of ellipsoids. Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).

  56. 56.

    Gautier, M., Muller, F., Le Forestier, L., Beny, J. M. & Guegan, R. NH4-smectite: characterization, hydration properties and hydro mechanical behaviour. Appl. Clay Sci. 49, 247–254 (2010).

  57. 57.

    Roberts W. L., Campbell T. J. & Rapp G. R. Encyclopedia of Minerals (Van Nostrand Reinhold, New York, 1990).

Download references


This work was supported by the NASA Dawn project. We thank H. Y. McSween, B. L. Ehlmann, M. Villarreal and S. Protopapa for their insightful comments.

Author information


  1. Southwest Research Institute, Boulder, CO, USA

    • S. Marchi
    • , T. Bowling
    •  & H. Kaplan
  2. Istituto di Astrofisica e Planetologia Spaziali–Istituto Nazionale di Astrofisica, Roma, Italy

    • A. Raponi
    • , M. C. De Sanctis
    • , M. Ciarniello
    • , E. Palomba
    •  & V. Vinogradoff
  3. Planetary Science Institute, Tucson, AZ, USA

    • T. H. Prettyman
    •  & N. Yamashita
  4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • J. Castillo-Rogez
    •  & C. A. Raymond
  5. Agenzia Spaziale Italiana, Via del Politecnico, Roma, Italy

    • E. Ammannito
  6. Earth Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, CA, USA

    • C. T. Russell
  7. Aix-Marseille University, PIIM UMR-CNRS, Marseille, France

    • V. Vinogradoff


  1. Search for S. Marchi in:

  2. Search for A. Raponi in:

  3. Search for T. H. Prettyman in:

  4. Search for M. C. De Sanctis in:

  5. Search for J. Castillo-Rogez in:

  6. Search for C. A. Raymond in:

  7. Search for E. Ammannito in:

  8. Search for T. Bowling in:

  9. Search for M. Ciarniello in:

  10. Search for H. Kaplan in:

  11. Search for E. Palomba in:

  12. Search for C. T. Russell in:

  13. Search for V. Vinogradoff in:

  14. Search for N. Yamashita in:


S.M. conceived the work. A.R., M.C.D.S., E.A., M.C., H.K. and E.P. provided spectral models. T.H.P. and N.Y. provided elemental models. All authors contributed to the interpretation of the results and to the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to S. Marchi.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–3

About this article

Publication history