Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mapping of shadows cast on a protoplanetary disk by a close binary system

Abstract

For a comprehensive understanding of planetary formation and evolution, we need to investigate the environment in which planets form: circumstellar disks. Here we present high-contrast imaging observations of V4046 Sagittarii, a 20-Myr-old close binary known to host a circumbinary disk. We have discovered the presence of rotating shadows in the disk, caused by mutual occultations of the central binary. Shadow-like features are often observed in disks1,2, but those found thus far have not been due to eclipsing phenomena. We have used the phase difference due to light travel time to measure the flaring of the disk and the geometrical distance of the system. We calculate a distance that is in very good agreement with the value obtained from the Gaia mission’s Data Release 2 (DR2), and flaring angles of α = (6.2 ± 0.6)° and α = (8.5 ± 1.0)° for the inner and outer disk rings, respectively. Our technique opens up a path to explore other binary systems, providing an independent estimate of distance and the flaring angle, a crucial parameter for disk modelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of IFS observations for 2015 (YJ bands) and 2017 (YH band) after a PCA algorithm (with 100 modes) has been applied to remove quasi-static speckles.
Fig. 2: Simplified sketch of the shadow phenomenon.
Fig. 3: Polarized IRDIS H-band observations.

Data availability

All the data are publicly available through the ESO archive (http://archive.eso.org/cms.html). The data that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Garufi, A. et al. Shadows and cavities in protoplanetary disks: HD 163296, HD 141569A, and HD 150193A in polarized light. Astron. Astrophys. 568, A40 (2014).

    Article  Google Scholar 

  2. 2.

    Marino, S. et al. Compact dust concentration in the MWC 758 protoplanetary disk. Astrophys. J. 813, 76 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Stempels, H. C. & Gahm, G. F. The close T Tauri binary V 4046 Sagittarii. Astron. Astrophys. 421, 1159–1168 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Rosenfeld, K. A., Andrews, S. M., Wilner, D. J., Kastner, J. H. & McClure, M. K. The structure of the evolved circumbinary disk around V4046 Sgr. Astrophys. J. 775, 136 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Torres, C. A. O, Quast, G. R, Melo, C. H. F. & Sterzik, M. F. Handbook of Star Forming Regions Vol. II The Southern Sky (ed. Reipurth, B.) 757–812 (Astronomical Society of the Pacific, San Francisco, 2008).

  6. 6.

    Torres, C. A. O. et al. Search for associations containing young stars (SACY). I. Sample and searching method. Astron. Astrophys. 460, 695–708 (2006).

    ADS  Article  Google Scholar 

  7. 7.

    Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Alexander, R. The dispersal of protoplanetary disks around binary stars. Astrophys. J. 757, L29 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Merrill, P. W. & Burwell, C. G. Additional stars whose spectra have a bright Hα line. Astrophys. J. 112, 72 (1950).

    ADS  Article  Google Scholar 

  10. 10.

    Jensen, E. L. N., Mathieu, R. D. & Fuller, G. A. The connection between submillimeter continuum flux and binary separation in young binaries: evidence of interaction between stars and disks. Astrophys. J. 458, 312 (1996).

    ADS  Article  Google Scholar 

  11. 11.

    Macintosh, B. et al. First light of the Gemini Planet Imager. Proc. Natl Acad. Sci. USA 111, 12661 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Rapson, V. A. et al. Scattered light from dust in the cavity of the V4046 Sgr transition disk. Astrophys. J. 803, L10 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Beuzit, J.-L. et al. SPHERE: a ‘Planet Finder’ instrument for the VLT. Proc. SPIE 7014, 701418 (2008).

    Article  Google Scholar 

  14. 14.

    Claudi, R. U. et al. SPHERE IFS: the spectro differential imager of the VLT for exoplanets search. Proc.SPIE 7014, 70143E (2008).

    Article  Google Scholar 

  15. 15.

    Dohlen, K. et al. The infra-red dual imaging and spectrograph for SPHERE: design and performance. Proc SPIE 7014, 70143L (2008).

    Article  Google Scholar 

  16. 16.

    Rosenfeld, K. A., Andrews, S. M., Wilner, D. J. & Stempels, H. C. A disk-based dynamical mass estimate for the young binary V4046 Sgr. Astrophys. J. 759, 119 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Benisty, M. et al. Shadows and spirals in the protoplanetary disk HD 100453. Astron. Astrophys. 597, A42 (2017).

    Article  Google Scholar 

  18. 18.

    Itoh, Y. et al. Near-infrared polarimetry of the GG Tauri a binary system. Res. Astron. Astrophys. 14, 1438–1446 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Wolff, S. G. et al. The PDS 66 circumstellar disk as seen in polarized light with the Gemini Planet Imager. Astrophys. J. 818, L15 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Debes, J. H. et al. Chasing shadows: rotation of the azimuthal asymmetry in the TW Hya disk. Astrophys. J. 835, 205 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Pohl, A. et al. Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet. Mon. Not. R. Astron. Soc. 453, 1768–1778 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Min, M., Stolker, T., Dominik, C. & Benisty, M. Connecting the shadows: probing inner disk geometries using shadows in transitional disks. Astron. Astrophys. 604, L10 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Facchini, S., Juhász, A. & Lodato, G. Signatures of broken protoplanetary discs in scattered light and in sub-millimetre observations. Mon. Not. R. Astron. Soc. 473, 4459–4475 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Avenhaus, H. et al. Disks around T Tauri stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS polarimetric imaging of eight prominent T Tauri disks. Astrophys. J. 863, 44 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Kuruwita, R. L., Ireland, M., Rizzuto, A., Bento, J. & Federrath, C. Multiplicity of disc-bearing stars in upper Scorpius and upper Centaurus–Lupus. Mon. Not. R. Astron. Soc. 480, 5099–5112 (2018).

    ADS  Google Scholar 

  26. 26.

    Chauvin, G. et al. SHINE, The SpHere INfrared survey for exoplanets. In Proc. Annual Meeting of the French Society of Astronomy and Astrophysics (eds Reylé, C. et al.) 331–335 (French Society of Astronomy and Astrophysics, 2017).

  27. 27.

    Vigan, A. et al. Photometric characterization of exoplanets using angular and spectral differential imaging. Mon. Not. R. Astron. Soc. 407, 71–82 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Pavlov, A. et al. SPHERE data reduction and handling system: overview, project status, and development. Proc. SPIE 7019, 701939 (2008).

    Article  Google Scholar 

  29. 29.

    Delorme, P. et al. The SPHERE Data Center: a reference for high contrast imaging processing. In Proc. Annual Meeting of the French Society of Astronomy and Astrophysics (eds Reylé, C. et al.) 347–361 (French Society of Astronomy and Astrophysics, 2017).

  30. 30.

    Maire, A.-L. et al. SPHERE IRDIS and IFS astrometric strategy and calibration. Proc. SPIE 9908, 990834 (2016).

    Article  Google Scholar 

  31. 31.

    Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. & Nadeau, D. Angular differential imaging: a powerful high-contrast imaging technique. Astrophys. J. 641, 556–564 (2006).

    ADS  Article  Google Scholar 

  32. 32.

    Galicher, R., Marois, C., Macintosh, B., Barman, T. & Konopacky, Q. M-band imaging of the HR 8799 planetary system using an innovative LOCI-based background subtraction technique. Astrophys. J. 739, L41 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Mesa, D. et al. Performance of the VLT planet finder SPHERE. II. Data analysis and results for IFS in laboratory. Astron. Astrophys. 576, A121 (2015).

    Article  Google Scholar 

  34. 34.

    Galicher, R. et al. Astrometric and photometric accuracies in high contrast imaging: the SPHERE speckle calibration tool (SpeCal). Astron. Astrophys. 615, A92 (2018).

    Article  Google Scholar 

  35. 35.

    Avenhaus, H. et al. Structures in the protoplanetary disk of HD142527 seen in polarized scattered light. Astrophys. J. 781, 87 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Quast, G. R., Torres, C. A. O., de La Reza, R., da Silva, L. & Mayor, M. V4046 Sgr, a key young binary system. IAU Symp. 200, 28 (2000).

    ADS  Google Scholar 

  37. 37.

    Donati, J.-F. et al. The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion. Mon. Not. R. Astron. Soc. 417, 1747–1759 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Milli, J. et al. Impact of angular differential imaging on circumstellar disk images. Astron. Astrophys. 545, A111 (2012).

    Article  Google Scholar 

  39. 39.

    Stolker, T. et al. Scattered light mapping of protoplanetary disks. Astron. Astrophys. 596, A70 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Sissa, E. et al. High-contrast study of the candidate planets and protoplanetary disk around HD100546. Preprint at https://arxiv.org/abs/1809.01001 (2018).

  41. 41.

    Maire, A.-L. et al. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging. Astron. Astrophys. 601, A134 (2017).

    Article  Google Scholar 

  42. 42.

    Henyey, L. G. & Greenstein, J. L. Diffuse radiation in the Galaxy. Astrophys. J. 93, 70–83 (1941).

    ADS  Article  Google Scholar 

  43. 43.

    Milli, J. et al. Near-infrared scattered light properties of the HR 4796A dust ring. A measured scattering phase function from 13.6 deg to 166.6 deg. Astron. Astrophys. 599, A108 (2017).

    Article  Google Scholar 

  44. 44.

    Kama, M., Pinilla, P. & Heays, A. N. Spirals in protoplanetary disks from photon travel time. Astron. Astrophys. 593, L20 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the ESO Paranal Staff for support for conducting the observations. E.S., R.G., D.M. and S.D. acknowledge support from the ‘Progetti Premiali’ funding scheme of the Italian Ministry of Education, University, and Research. D.M. acknowledges support from the ESO-Government of Chile Joint Committee program ‘Direct imaging and characterization of exoplanets’. E.R. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 664931. This work has been supported by the project PRIN-INAF 2016 The Cradle of Life—GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of life with SKA). A.Z. acknowledges support from the CONICYT + PAI/Convocatoria nacional subvención a la instalación en la academia, convocatoria 2017 + Folio PAI77170087. The authors acknowledge financial support from the Programme National de Planétologie (PNP) and the Programme National de Physique Stellaire (PNPS) of CNRS-INSU. This work has also been supported by a grant from the French Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56). The project is supported by CNRS, by the Agence Nationale de la Recherche (ANR-14-CE33-0018). This work is partly based on data products produced at the SPHERE Data Centre hosted at OSUG/IPAG, Grenoble. We thank P. Delorme and E. Lagadec (SPHERE Data Centre) for their help during the data reduction process. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF Osservatorio Astronomico di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant no. RII3-Ct-2004-001566 for FP6 (2004-2008), grant no. 226604 for FP7 (2009-2012) and grant no. 312430 for FP7 (2013-2016). This work made extensive use of the SIMBAD and NASA ADS databases.

Author information

Affiliations

Authors

Contributions

V.D’O., R.Gr., S.De., H.A., T.St., E.G., E.R., E.S. and T.Sca. analysed the SPHERE data and prepared the manuscript and the figures. D.Mo., W.B., D. Me., G.S., A.B. and A.M.L. performed the observations in 2015 and 2017. T.B., E.B., S.Da., R.Ga., J.H., J.L., M.L., A.-L.M., S.P., C.P., L.R. and T.Sch. reduced the data as part of the SPHERE Data Reduction team in the framework of the SPHERE GTO. S.B. and M.D. performed the orbital period analysis. M.Be., A.B., M.Bo., J.G., H.J.-C., M.J., Q.K., F.M., J.E.S., J.S., C.T., P.T., G.v.d.P., A.V. and A.Z. contributed to the discussion of the results with helpful and fundamental comments and suggestions. G.C. and M.F. are key people of the SHINE survey carried out with SPHERE. O.M.-N., R.R., P.R., A.R. and J.R. are SPHERE builders.

Corresponding author

Correspondence to V. D’Orazi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Orazi, V., Gratton, R., Desidera, S. et al. Mapping of shadows cast on a protoplanetary disk by a close binary system. Nat Astron 3, 167–172 (2019). https://doi.org/10.1038/s41550-018-0626-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing