Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The future of fast radio burst science


The field of fast radio burst (FRB) science is currently thriving. The lines of active investigation include theoretical and observational aspects of these enigmatic millisecond radio signals. These pursuits are for the most part intertwined so that each keeps the other in check, characteristic of the healthy state of the field. The immediate future for FRB science is full of promise—we will in the next few years see two orders of magnitude more FRBs discovered by the now diverse group of instruments spread across the globe involved in these efforts. This increased crop, and the increased information obtained per event, will allow a number of fundamental questions to be answered, and FRBs’ potential as astrophysical and cosmological tools to be exploited. Questions as to the exact detailed nature of FRB progenitors and whether or not there are one or more types of progenitor will be answered. Questions as to source counts, the luminosity distribution and cosmological density of FRBs will also be addressed. Looking further ahead, applications involving FRBs at the highest redshifts look set to be a major focus of the field. The potential exists to evolve to a point where statistically robust cosmological tests, orthogonal to those already undertaken in other ways, will be achieved. Related work into FRB foregrounds, as well as how to identify new events in ever more challenging radio-frequency interference environments, also appear likely avenues for extensive investigations in the coming years.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The transient parameter space showing radio luminosity, Lν, on the vertical axis versus the product of observing frequency and timescale on the horizontal axis95.
Fig. 2: The number of FRBs detected each year since the first events in 2001 up to and including the first half of 2018.
Fig. 3: The main panel shows the average DM due to the IGM as a function of redshift (see main text).


  1. 1.

    Caleb, M., Spitler, L. G. & Stappers, B. W. One or several populations of fast radio burst sources? Nat. Astron. (2018).

  2. 2.

    Pen, U.-L. The nature of fast radio bursts. Nat. Astron. (2018).

  3. 3.

    Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at (2002).

  4. 4.

    Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts-II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 348, 999–1008 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    Xu, J. & Han, J. L. Extragalactic dispersion measures of fast radio bursts. Res. Astron. Astrophys. 15, 1629 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Macquart, J.-P. et al. Fast transients at cosmological distances with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 55 (2015).

  9. 9.

    Macquart, J.-P. & Ekers, R. D. FRB event rate counts II fluence, redshift and dispersion measure distributions. Mon. Not. R. Astron. Soc 480, 4211–4230 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Hankins, T. H., Eilek, J. A. & Jones, G. The Crab pulsar at centimeter wavelengths. II. single pulses. Astrophys. J. 833, 47 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Farah, W. et al. FRB microstructure revealed by the real-time detection of FRB170827. Mon. Not. R. Astron. Soc. 478, 1209–1217 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    Burke-Spolaor, S., Bailes, M., Ekers, R., Macquart, J.-P. & Crawford, F. Radio bursts with extragalactic spectral characteristics show terrestrial origins. Astrophys. J. 727, 18 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Keane, E. F., Stappers, B. W., Kramer, M. & Lyne, A. G. On the origin of a highly dispersed coherent radio burst. Mon. Not. R. Astron. Soc. 425, L71–L75 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Thornton, D. et al. A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Spitler, L. G. et al. Fast radio burst discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J. 790, 101–110 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Petroff, E. et al. Identifying the source of perytons at the Parkes radio telescope. Mon. Not. R. Astron. Soc. 451, 3933–3940 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Caleb, M. et al. The first interferometric detections of fast radio bursts. Mon. Not. R. Astron. Soc. 468, 3746–3756 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Macquart, J.-P. Probing the Universe’s baryons with fast radio bursts. Nat. Astron. (2018).

  20. 20.

    Bregman, J. N. The search for the missing baryons at low redshift. Ann. Rev. Astron. Astrophys. 45, 221–259 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Shull, J. M., Smith, B. D. & Danforth, C. W. The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. Astrophys. J. 759, 23 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological parameter results. Astrophys. J. Supp. 208, 19 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    McQuinn, M. Locating the “missing” baryons with extragalactic dispersion measure estimates. Astrophys. J. 780, L33–L38 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Michili, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Caleb, M. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts-III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 478, 2046–2055 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Macquart, J.-P. & Koay, Y. Temporal smearing of transient radio sources by the intergalactic medium. Astrophys. J. 776, 125 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Keane, E. F., Kramer, M., Lyne, A. G., Stappers, B. W. & McLaughlin, M. A. Rotating Radio Transients: new discoveries, timing solutions and musings. Mon. Not. R. Astron. Soc. 415, 3065–3080 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Burke-Spolaor, S. & Bannister, K. W. The galactic position dependence of fast radio bursts and the discovery of FRB 011025. Astrophys. J. 792, 19–26 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Manchester, R. N. et al. The Parkes multi-beam pulsar survey-I. Observing and data analysis systems, discovery and timing of 100 pulsars. Mon. Not. R. Astron. Soc. 328, 17–35 (2001).

    ADS  Article  Google Scholar 

  32. 32.

    Burgay, M. et al. The Parkes high-latitude pulsar survey. Mon. Not. R. Astron. Soc. 368, 283–292 (2006).

    ADS  Article  Google Scholar 

  33. 33.

    Jacoby, B. A., Bailes, M., Ord, S. M., Edwards, R. T. & Kulkarni, S. R. A Large-Area Survey for Radio Pulsars at High Galactic Latitudes. Astrophys. J. 699, 2009–2016 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Burgay, M. et al. The Perseus Arm Pulsar Survey. Mon. Not. R. Astron. Soc. 429, 579–588 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Keith, M. J. et al. The High Time Resolution Universe Pulsar Survey-I. System configuration and initial discoveries. Mon. Not. R. Astron. Soc. 409, 619–627 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Barr, E. D. et al. The Northern High Time Resolution Universe Pulsar Survey-I. Setup and initial discoveries. Mon. Not. R. Astron. Soc. 435, 2234–2245 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Champion, D. et al. Five new Fast Radio Bursts from the HTRU high latitude survey: first evidence for two-component bursts. Mon. Not. R. Astron. Soc. 460, L30–L34 (2015).

  38. 38.

    Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Hardy, L. K. et al. A search for optical bursts from the repeating fast radio burst FRB 121102. Mon. Not. R. Astron. Soc. 472, 2800–2807 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Acero, F. et al. French SKA White Book-The French community towards the Square Kilometre Array. Preprint at (2017).

  41. 41.

    Scholz, P. et al. Simultaneous X-ray, gamma-ray, and radio observations of the repeating fast radio burst FRB 121102. Astrophys. J. 846, 80 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Oppermann, N., Yu, H.-R. & Pen, U.-L. On the non-Poissonian repetition pattern of FRB121102. Mon. Not. R. Astron. Soc. 475, 5109–5115 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. 834, L7 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Bassa, C. G. et al. FRB 121102 is coincident with a star-forming region in its host galaxy. Astrophys. J. 843, L8 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Keane, E. F. The Transient Radio Sky. PhD thesis, Univ. Manchester (2010)

  47. 47.

    Katz, J. I. Excess close burst pairs in FRB 121102. Mon. Not. R. Astron. Soc. 476, 1849–1852 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Patel, C. et al. PALFA single-pulse pipeline: New pulsars, rotating radio transients and a candidate fast radio burst. Preprint at (2018).

  50. 50.

    Bailes, M. et al. The UTMOST: A hybrid digital signal processor transforms the Molonglo Observatory Synthesis Telescope. Publ. Astron. Soc. Aus. 34, 45 (2017).

  51. 51.

    Chawla, P. et al. A search for fast radio bursts with the GBNCC Pulsar Survey. Astrophys. J. 844, 140 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Bannister, K. W. et al. The detection of an extremely bright fast radio burst in a phased array feed survey. Astrophys. J. 841, L12 (2017).

  53. 53.

    Shannon, R. M. et al. The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature (2018).

    ADS  Article  Google Scholar 

  54. 54.

    Boyle, P. J. et al. First detection of fast radio bursts between 400 and 800 MHz by CHIME/FRB. Astronomer’s Telegram 11901 (2018).

  55. 55.

    Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, 137 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Staveley-Smith, L. et al. The Parkes 21 cm multibeam receiver. Publ. Astron. Soc. Aus. 13, 243–248 (1996).

    ADS  Article  Google Scholar 

  57. 57.

    Price, D. C. et al. HIPSR: A digital signal processor for the Parkes 21-cm Multibeam Receiver. J. Astron. Instrum. 5, 1641007 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Macquart, J.-P. & Ekers, R. D. Fast radio burst event rate counts-I. Interpreting the observations. Mon. Not. R. Astron. Soc. 474, 1900–1908 (2018).

    ADS  Article  Google Scholar 

  59. 59.

    Keane, E. F. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts-I. Survey description and overview. Mon. Not. R. Astron. Soc. 473, 116–135 (2018).

    ADS  Article  Google Scholar 

  60. 60.

    Bhandari, S. et al. Discovery of FRB 180923 at the Parkes Radio Telescope Astronomer's Telegram 12060 (2018).

  61. 61.

    Keane, E. F. & Petroff, E. Fast radio bursts: search sensitivities and completeness. Mon. Not. R. Astron. Soc. 447, 2852–2856 (2015).

    ADS  Article  Google Scholar 

  62. 62.

    Ryle, M. & Clarke, R. W. An examination of the steady-state model in the light of some recent observations of radio sources. Mon. Not. R. Astron. Soc. 122, 349 (1961).

    ADS  Article  Google Scholar 

  63. 63.

    Vedantham, H., Ravi, V., Hallinan, G. & Shannon, R. M. The fluence and distance distributions of fast radio bursts. Astrophys. J. 830, 75 (2016).

    ADS  Article  Google Scholar 

  64. 64.

    Keane, E. F. et al. The host galaxy of a fast radio burst. Nature 530, 453–456 (2016).

    ADS  Article  Google Scholar 

  65. 65.

    Gajjar, V. et al. Highest-frequency detection of FRB 121102 at 4-8 GHz using the Breakthrough Listen digital backend at the Green Bank Telescope. Astrophys. J. (2018).

    ADS  Article  Google Scholar 

  66. 66.

    Keane, E. F. Classifying RRATs and FRBs. Mon. Not. R. Astron. Soc. 459, 1360–1362 (2016).

    ADS  Article  Google Scholar 

  67. 67.

    Rane, A. & Loeb, A. A search for host galaxies of potentially extragalactic rotating radio transients. Mon. Not. R. Astron. Soc. 467, L11–L15 (2017).

    ADS  Article  Google Scholar 

  68. 68.

    Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 447, 246–255 (2015).

    ADS  Article  Google Scholar 

  69. 69.

    Petroff, E. et al. A polarized fast radio burst at low Galactic latitude. Mon. Not. R. Astron. Soc. 469, 4465–4482 (2017).

    ADS  Google Scholar 

  70. 70.

    Connor, L., Sievers, J. & Pen, U.-L. Non-cosmological FRBs from young supernova remnant pulsars. Mon. Not. R. Astron. Soc. 458, L19–L23 (2015).

    ADS  Google Scholar 

  71. 71.

    Price, D. C. et al. Detection of a new fast radio burst during Breakthrough Listen observations. Astronomer’s Telegram 11376 (2018).

  72. 72.

    Oslowski, S. et al. Real-time detection of an extremely high signal-to-noise ratio fast radio burst during observations of PSR J2124-3358. Astronomer’s Telegram 11385 (2018).

  73. 73.

    Oslowski, S. et al. A second fast radio burst discovered with Parkes Telescope within 50 hours: FRB180311 in the direction of PSR J2129-5721. Astronomer’s Telegram 11396 (2018).

  74. 74.

    Oslowski, S. et al. A fast radio burst towards the millisecond pulsar PSR J1744-1134 found during a commensal search by the Parkes Pulsar Timing Array. Astronomer’s Telegram 11851 (2018).

  75. 75.

    Fialkov, A., Loeb, A. & Lorimer, D. R. Enhanced rates of fast radio bursts from galaxy clusters. Preprint at (2018).

  76. 76.

    Ioka, K. The cosmic dispersion measure from gamma-ray burst afterglows: Probing the reionization history and the burst environment. Astrophys. J. 598, L79–L82 (2003).

    ADS  Article  Google Scholar 

  77. 77.

    Sokasian, A., Abel, T. & Hernquist, L. The epoch of helium reionization. Mon. Not. R. Astron. Soc. 332, 601–616 (2002).

    ADS  Article  Google Scholar 

  78. 78.

    Zhou, B., Li, X., Wang, T., Fan, Y.-Z. & Wei, D.-M. Fast radio bursts as a cosmic probe? Phys. Rev. D 89, 107303 (2014).

    ADS  Article  Google Scholar 

  79. 79.

    Petroff, E. et al. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Aus. 33, e045 (2016).

  80. 80.

    Lorimer, D. R. A decade of fast radio bursts. Nat. Astron. (2018).

  81. 81.

    Dolag, K., Gaensler, B. M., Beck, A. M. & Beck, M. C. Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 451, 4277–4289 (2015).

    ADS  Article  Google Scholar 

  82. 82.

    Zheng, Z., Ofek, E. O., Kulkarni, S. R., Neill, J. D. & Juric, M. Probing the intergalactic medium with fast radio bursts. Astrophys. J. 797, 71 (2014).

  83. 83.

    Madau, P. & Dickinson, M. Cosmic star-formation history. Ann. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS  Article  Google Scholar 

  84. 84.

    Amiri, M. et al. The CHIME Fast Radio Burst Project: System overview. Astrophys. J. (2014).

  85. 85.

    Stappers, B. W. MeerTRAP: Real time commensal searching for transients and pulsars with MeerKAT. Proc. Sci. (MeerKAT2016) 10 (2016);

  86. 86.

    Keane, E. F. & Green, J. Parkes Fast Radio Burst National Facility Detection Mode Parkes October 2018 Call for Proposals Discussion Document (2016);

  87. 87.

    Li, D. et al. FAST in space: Considerations for a multibeam, multipurpose survey using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microwave Magazine 19, 112–119 (2018).

    ADS  Article  Google Scholar 

  88. 88.

    Keane, E. F. Pulsar science with the SKA. IAU Symp. 337, 158–164 (2017).

    Article  Google Scholar 

  89. 89.

    Karastergiou, A. et al. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend. Mon. Not. R. Astron. Soc. 452, 1254–1262 (2015).

    ADS  Article  Google Scholar 

  90. 90.

    Green, J. Future plans for the Parkes Radio Telescope in the era of the SKA. Proc. URSI General Assembly (2017).

  91. 91.

    Rossi, D. A. et al. Performance of a highly sensitive, 19-element, dual-polarization, cryogenic L-band phased-array feed on the Green Bank Telescope. Astron. J. 155, 202 (2018).

  92. 92.

    Maan, Y. & van Leeuwen, J. Real-time searches for fast transients with Apertif and LOFAR. Preprint at (2017).

  93. 93.

  94. 94.

    Fender, R. & Oosterloo, T. Neutral hydrogen absorption towards Fast Radio Bursts. Mon. Not. R. Astron. Soc. 451, L75–L79 (2015).

    ADS  Article  Google Scholar 

  95. 95.

    Pietka, M., Fender, R. P. & Keane, E. F. The variability time-scales and brightness temperatures of radio flares from stars to supermassive black holes. Mon. Not. R. Astron. Soc. 446, 3687–3696 (2015).

    ADS  Article  Google Scholar 

  96. 96.

    Barsdell, B. R., Bailes, M., Barnes, D. G. & Fluke, C. J. Accelerating incoherent dedispersion. Mon. Not. R. Astron. Soc. 422, 379–392 (2012).

    ADS  Article  Google Scholar 

  97. 97.

    Fukugita, M. & Peebles, P. J. E. The Cosmic Energy Inventory. Astrophys. J. 616, 643–668 (2004).

    ADS  Article  Google Scholar 

Download references


The author would like to thank D. Lorimer, M. Caleb, J. Green and the anonymous referee for helpful comments that improved the quality of this manuscript. The author would like to thank the ASKAP FRB team for providing advanced knowledge of their first 26 FRB discoveries, to the PALFA FRB team for advanced knowledge on FRB 141113, and to the DSA FRB team for advanced knowledge on the DSA specifications.

Author information



Corresponding author

Correspondence to E. F. Keane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keane, E.F. The future of fast radio burst science. Nat Astron 2, 865–872 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing