Abstract

Distinctive landscapes termed ‘washboard’ and ‘fluted’ terrains1,2, which border the N2 ice plains of Sputnik Planitia along its northwest margin, are among the most enigmatic landforms yet seen on Pluto. These terrains consist of parallel to sub-parallel ridges that display a remarkably consistent east-northeast–west-southwest orientation—a configuration that does not readily point to a simple analogous terrestrial or planetary process or landform. Here, we report on mapping and analysis of their morphometry and distribution as a means to determine their origin. Based on their occurrence in generally low-elevation, low-relief settings adjacent to Sputnik Planitia that coincide with a major tectonic system, and through comparison with fields of sublimation pits seen in southern Sputnik Planitia, we conclude that washboard and fluted terrains represent crustal debris that were buoyant in pitted glacial N2 ice that formerly covered this area, and which were deposited after the N2 ice receded via sublimation. Crater surface age estimates indicate that this N2 ice glaciation formed and disappeared early in Pluto’s history, soon after formation of the Sputnik Planitia basin. These terrains constitute an entirely new category of glacial landform.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Moore, J. M. et al. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016).

  2. 2.

    Howard, A. D. et al. Present and past glaciation on Pluto. Icarus 287, 287–300 (2017).

  3. 3.

    Schenk, P. M. et al. Basins, fractures and volcanoes: global cartography and topography of Pluto from New Horizons. Icarus 314, 400–433 (2018).

  4. 4.

    Schmitt, B. et al. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229–260 (2017).

  5. 5.

    Greenstreet, S. et al. Impact and cratering rates onto Pluto. Icarus 258, 267–288 (2015).

  6. 6.

    Bertrand, T. et al. The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus 309, 277–296 (2018).

  7. 7.

    Bertrand, T. & Forget, F. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540, 86–89 (2016).

  8. 8.

    Earle, A. M. et al. Long-term surface temperature modeling of Pluto. Icarus 287, 37–46 (2017).

  9. 9.

    Keane, J. T. et al. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540, 90–93 (2016).

  10. 10.

    White, O. L. et al. Geological mapping of Sputnik Planitia on Pluto. Icarus 287, 261–286 (2017).

  11. 11.

    Moore, J. M. et al. Sublimation as a landform-shaping process on Pluto. Icarus 287, 320–333 (2017).

  12. 12.

    Stern, S. A. et al. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287, 47–53 (2017).

  13. 13.

    Wei, Q. et al. Young surface of Pluto’s Sputnik Planitia caused by viscous relaxation. Astrophys. J. Lett. 856, L14 (2018).

  14. 14.

    Gladstone, G. R. et al. The atmosphere of Pluto as observed by New Horizons. Science 351, aad8866 (2016).

  15. 15.

    Grundy, W. M. et al. Surface compositions across Pluto and Charon. Science 351, aad9189 (2016).

  16. 16.

    Grundy, W. M. et al. Pluto’s haze as a surface material. Icarus 314, 232–245 (2018).

  17. 17.

    Buratti, B. J. et al. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287, 207–217 (2017).

  18. 18.

    Moore, J. M. et al. Bladed terrain on Pluto: possible origins and evolution. Icarus 300, 129–144 (2018).

  19. 19.

    Robbins, S. J. et al. Craters of the Pluto–Charon system. Icarus 287, 187–206 (2017).

  20. 20.

    Crater Analysis Techniques Working Group. Standard techniques for presentation and analysis of crater size–frequency data. Icarus 37, 467–474 (1979).

  21. 21.

    Singer, K. N. et al. Craters on Pluto and Charon—surface ages and impactor populations. In Proc. 47th Lunar and Planetary Science Conference 2310 (LPI, 2016).

  22. 22.

    Nimmo, F. et al. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94–96 (2016).

  23. 23.

    Matsuyama, I. & Nimmo, F. Tectonic patterns on reoriented and despun planetary bodies. Icarus 195, 459–473 (2008).

  24. 24.

    Matthes, F. E. Ablation of snow-fields at high altitudes by radiant solar heat. Trans. Am. Geophys. Union 15, 380–385 (1934).

  25. 25.

    Lliboutry, L. The origin of penitents. J. Glaciol. 2, 331–338 (1954).

  26. 26.

    Amstutz, G. C. On the formation of snow penitentes. J. Glaciol. 3, 304–311 (1958).

  27. 27.

    Moores, J. E. et al. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541, 188–190 (2017).

Download references

Acknowledgements

This work was supported by NASA’s New Horizons project.

Author information

Author notes

  1. A full list of members and their affiliations appears at the end of the paper.

Affiliations

  1. The SETI Institute, Mountain View, CA, USA

    • Oliver L. White
    • , Ross A. Beyer
    • , Cristina M. Dalle Ore
    • , Mark R. Showalter
    • , Oliver L. White
    • , Orkan M. Umurhan
    •  & Carrie L. Chavez
  2. Space Science Division, NASA Ames Research Center, Moffett Field, CA, USA

    • Oliver L. White
    • , Jeffrey M. Moore
    • , Tanguy Bertrand
    • , Kimberly Ennico
    • , Jeffrey M. Moore
    • , Ross A. Beyer
    • , Dale P. Cruikshank
    • , Cristina M. Dalle Ore
    • , Oliver L. White
    • , Orkan M. Umurhan
    • , Carrie L. Chavez
    •  & Kimberly Ennico
  3. Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA

    • Alan D. Howard
    • , Alan D. Howard
    •  & Anne J. Verbiscer
  4. Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St Louis, Saint Louis, MI, USA

    • William B. McKinnon
    •  & William B. McKinnon
  5. California Institute of Technology, Pasadena, CA, USA

    • James T. Keane
  6. Southwest Research Institute, Boulder, CO, USA

    • Kelsi N. Singer
    • , Stuart J. Robbins
    • , S. Alan Stern
    • , Cathy B. Olkin
    • , Leslie A. Young
    • , John R. Spencer
    • , Marc W. Buie
    • , G. Randy Gladstone
    • , Cathy B. Olkin
    • , Joel W. Parker
    • , Simon B. Porter
    • , Harold J. Reitsema
    • , Stuart J. Robbins
    • , Kelsi N. Singer
    • , Cindy A. Conrad
    • , Carly J. A. Howett
    • , Joshua A. Kammer
    • , Alex H. Parker
    • , Kurt D. Retherford
    • , Eric Schindhelm
    • , Andrew J. Steffl
    • , Constantine C. C. Tsang
    • , Amanda M. Zangari
    • , S. Alan Stern
    •  & Leslie A. Young
  7. Lunar and Planetary Institute, Houston, TX, USA

    • Paul M. Schenk
    •  & Paul M. Schenk
  8. Université Grenoble Alpes, CNRS, IPAG, Grenoble, France

    • Bernard Schmitt
  9. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • Bonnie J. Buratti
    • , Bonnie J. Buratti
    •  & Jason D. Hofgartner
  10. Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

    • Harold A. Weaver
    • , Andrew F. Cheng
    • , James H. Roberts
    • , Harold A. Weaver
    • , Olivier S. Barnouin
    • , Carey M. Lisse
    • , Annie Marcotte
    • , Magda Saina
    • , Kirby Runyon
    • , Helene Winters
    •  & Harold A. Weaver
  11. Lowell Observatory, Flagstaff, AZ, USA

    • William M. Grundy
  12. National Optical Astronomy Observatory, Tucson, AZ, USA

    • Tod R. Lauer
  13. Stanford University, Stanford, CA, USA

    • Ivan R. Linscott
    •  & G. Len Tyler
  14. University of California Santa Cruz, Santa Cruz, CA, USA

    • Francis Nimmo
  15. NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • Dennis C. Reuter
    • , Michael E. Summers
    •  & Maria Banks
  16. Johns Hopkins University, Baltimore, MD, USA

    • Darrel F. Strobel
  17. University of Arizona, Tucson, AZ, USA

    • Veronica J. Bray
  18. Cornell University, Ithaca, NY, USA

    • Brian Carcich
  19. Independent science writer, Arlington, VT, USA

    • Andrew L. Chaikin
  20. University of Maryland, College Park, MD, USA

    • Douglas P. Hamilton
  21. Space Telescope Science Institute, Baltimore, MD, USA

    • John Stansberry
  22. Roane State Community College, Harriman, TN, USA

    • Ted Stryk
  23. Planetary Science Institute, Tucson, AZ, USA

    • Henry B. Throop
  24. Massachusetts Institute of Technology, Cambridge, MA, USA

    • Richard P. Binzel
    •  & Alissa M. Earle

Authors

  1. Search for Oliver L. White in:

  2. Search for Jeffrey M. Moore in:

  3. Search for Alan D. Howard in:

  4. Search for William B. McKinnon in:

  5. Search for James T. Keane in:

  6. Search for Kelsi N. Singer in:

  7. Search for Tanguy Bertrand in:

  8. Search for Stuart J. Robbins in:

  9. Search for Paul M. Schenk in:

  10. Search for Bernard Schmitt in:

  11. Search for Bonnie J. Buratti in:

  12. Search for S. Alan Stern in:

  13. Search for Kimberly Ennico in:

  14. Search for Cathy B. Olkin in:

  15. Search for Harold A. Weaver in:

  16. Search for Leslie A. Young in:

Consortia

  1. New Horizons Geology, Geophysics and Imaging Theme Team

Contributions

O.L.W. performed the mapping that is the basis of the research and wrote the majority of the main text, as well as the ‘Factors affecting ridge mapping’ and ‘Surface albedo, colour and composition’ sections of the Methods. J.M.M., A.D.H. and W.B.M. aided O.L.W. in interpretation of the mapping and morphometric analysis, and editing of the manuscript. J.T.K. quantitatively compared the washboard mapping results with TPW simulations (Supplementary Fig. 6) and provided much of the text in the ‘Do washboard ridges record a palaeopole?’ section of the Methods. K.N.S. provided much of the text in the ‘Crater density-based terrain age estimates’ section of the Methods, as well as editing the manuscript. T.B. provided text discussing climatological considerations of the glaciation hypothesis for WFT, as well as editing the manuscript. S.J.R. provided the pixel scale, solar incidence angle and emission angle maps in Supplementary Fig. 2b–d, as well as editing the manuscript. P.M.S. provided the topography data used in the mapping and analysis (including the DEM shown in Fig. 2b and Supplementary Fig. 1) and associated text. B.S. provided the composition maps in Supplementary Fig. 1c–f and associated text. B.J.B. provided the normal reflectance map in Supplementary Fig. 1b. Per New Horizons team requirements, the New Horizons Science Team principal investigator (S.A.S.) and four project scientists (K.E., C.B.O., H.A.W. and L.A.Y.) must be included as co-authors on all peer-reviewed papers authored by New Horizons team members and affiliates. All authors approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Oliver L. White.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0592-z