Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of the primordial helium abundance from the intergalactic medium

Abstract

Almost every helium atom in the Universe was created just a few minutes after the Big Bang through a process commonly referred to as Big Bang nucleosynthesis1,2. The amount of helium that was made during Big Bang nucleosynthesis is determined by combining particle physics and cosmology3. The current leading measures of the primordial helium abundance (YP) are based on the relative strengths of H i and He i emission lines emanating from star-forming regions in local metal-poor galaxies4,5,6,7. As the statistical errors on these measurements improve, it is essential to test for systematics by developing independent techniques. Here we report a determination of the primordial helium abundance based on a near-pristine intergalactic gas cloud that is seen in absorption against the light of a background quasar. This gas cloud, observed when the Universe was just one-third of its present age (zabs = 1.724), has a metal content around 100 times less than that of the Sun, and at least 30% less metal content than the most metal-poor H ii region currently known where a determination of the primordial helium abundance is possible. We conclude that the helium abundance of this intergalactic gas cloud is \(Y = 0.250_{ - 0.025}^{ + 0.033}\), which agrees with the standard model primordial value8,9,10, YP = 0.24672 ± 0.00017. Our determination of the primordial helium abundance is not yet as precise as that derived using metal-poor galaxies, but our method has the potential to offer a competitive test of physics beyond the standard model during Big Bang nucleosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogen and helium absorption from an intergalactic gas cloud towards the quasar HS 1700 + 6416.
Fig. 2: Heavy-element absorption due to an intergalactic gas cloud towards the quasar HS 1700 + 6416.
Fig. 3: Confidence regions of the model parameters.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The Keck HIRES data are available as a high-level science product from the W. M. Keck Observatory Data Archive at https://koa.ipac.caltech.edu/cgi-bin/KOA/nph-KOAlogin. The fully reduced HST FOS data are available from https://archive.stsci.edu/prepds/fos_agn/. The reduced HST COS data are available at http://archive.stsci.edu/proposal_search.php?mission=hst&id=13491.

References

  1. Alpher, R. A., Bethe, H. & Gamow, G. The origin of chemical elements. Phys. Rev. 73, 803–804 (1948).

    Article  ADS  Google Scholar 

  2. Hoyle, F. & Tayler, R. J. The mystery of the cosmic helium abundance. Nature 203, 1108–1110 (1964).

    Article  ADS  Google Scholar 

  3. Steigman, G., Schramm, D. N. & Gunn, J. E. Cosmological limits to the number of massive leptons. Phys. Lett. B 66, 202–204 (1977).

    Article  ADS  Google Scholar 

  4. Izotov, Y. I., Thuan, T. X. & Guseva, N. G. A new determination of the primordial He abundance using the He i λ10830 Å emission line: cosmological implications. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).

    Article  ADS  Google Scholar 

  5. Aver, E., Olive, K. A. & Skillman, E. D. The effects of He i λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 7, 011 (2015).

    Article  ADS  Google Scholar 

  6. Peimbert, A., Peimbert, M. & Luridiana, V. The primordial helium abundance and the number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419–424 (2016).

    ADS  Google Scholar 

  7. Fernández, V., Terlevich, E., Díaz, A. I., Terlevich, R. & Rosales-Ortega, F. F. Primordial helium abundance determination using sulphur as metallicity tracer. Mon. Not. R. Astron. Soc. 478, 5301–5319 (2018).

    Article  ADS  Google Scholar 

  8. Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  9. Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision Big Bang nucleosynthesis with improved helium-4 predictions. Phys. Rep 754, 1–66 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. Pattie, R. W. et al. Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection. Science 360, 627–632 (2018).

    Article  ADS  Google Scholar 

  11. Crighton, N. H. M., O’Meara, J. M. & Murphy, M. T. Possible population III remnants at redshift 3.5. Mon. Not. R. Astron. Soc. 457, L44–L48 (2016).

    Article  ADS  Google Scholar 

  12. Lehner, N., O’Meara, J. M., Howk, J. C., Prochaska, J. X. & Fumagalli, M. The cosmic evolution of the metallicity distribution of ionized gas traced by Lyman limit systems. Astrophys. J. 833, 283–316 (2016).

    Article  ADS  Google Scholar 

  13. Cooke, R. J., Pettini, M. & Steidel, C. C. Discovery of the most metal-poor damped Lyman-α system. Mon. Not. R. Astron. Soc. 467, 802–811 (2017).

    ADS  Google Scholar 

  14. Fumagalli, M., O’Meara, J. M. & Prochaska, J. X. Detection of pristine gas two billion years after the Big Bang. Science 334, 1245–1249 (2011).

    Article  ADS  Google Scholar 

  15. Cooke, R. J., Pettini, M. & Steidel, C. C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102–117 (2018).

    Article  ADS  Google Scholar 

  16. Fechner, C. et al. The UV spectrum of HS 1700 + 6416. I. Predicting the metal line content of the far UV spectrum. Astron. Astrophys. 455, 73–90 (2006).

    Article  ADS  Google Scholar 

  17. Reimers, D. & Vogel, S. He i absorption lines in high redshift Lyman limit systems of the QSO HS 1700 + 6416. Astron. Astrophys. 276, L13–L16 (1993).

    ADS  Google Scholar 

  18. Syphers, D. & Shull, J. M. The He ii post-reionization epoch: HST/COS observations of the quasar HS1700 + 6416. Astrophys. J. 765, 119–128 (2013).

    Article  ADS  Google Scholar 

  19. O’Meara, J. M. et al. The first data release of the KODIAQ survey. Astron. J. 150, 111–121 (2015).

    Article  ADS  Google Scholar 

  20. O’Meara, J. M. et al. The second data release of the KODIAQ survey. Astron. J. 154, 114–118 (2017).

    Article  ADS  Google Scholar 

  21. Evans, I. N. & Koratkar, A. P. A complete atlas of recalibrated Hubble Space Telescope Faint Object Spectrograph spectra of active galactic nuclei and quasars. I. Pre-COSTAR spectra. Astrophys. J. Suppl. 150, 73–164 (2004).

    Article  ADS  Google Scholar 

  22. Cooke, R. J., Pettini, M., Jorgenson, R. A., Murphy, M. T. & Steidel, C. C. Precision measures of the primordial abundance of deuterium. Astrophys. J. 781, 31–46 (2014).

    Article  ADS  Google Scholar 

  23. Ferland, G. J. et al. The 2017 release Cloudy. Astron. Astrophys. 53, 385–438 (2017).

    Google Scholar 

  24. Haardt, F. & Madau, P. Radiative transfer in a clumpy universe. IV. New synthesis models of the cosmic UV/X-ray background. Astrophys. J. 746, 125–144 (2012).

    Article  ADS  Google Scholar 

  25. Shapley, A. E. et al. Ultraviolet to mid-infrared observations of star-forming galaxies at z ~ 2: stellar masses and stellar populations. Astrophys. J. 626, 698–722 (2005).

    Article  ADS  Google Scholar 

  26. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  27. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  28. Izotov, Y. I. & Thuan, T. X. Heavy-element abundances in blue compact galaxies. Astrophys. J. 511, 639–659 (1999).

    Article  ADS  Google Scholar 

  29. Fumagalli, M., O’Meara, J. M. & Prochaska, J. X. The physical properties of z > 2 Lyman limit systems: new constraints for feedback and accretion models. Mon. Not. R. Astron. Soc. 455, 4100–4121 (2016).

    Article  ADS  Google Scholar 

  30. Izotov, Y. I., Thuan, T. X. & Stasińska, G. The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H ii regions. Astrophys. J. 662, 15–38 (2007).

    Article  ADS  Google Scholar 

  31. Muslimov, E. et al. POLLUX: a UV spectropolarimeter for the LUVOIR space telescope project. Preprint at https://arxiv.org/abs/1805.09067 (2018).

  32. O’Meara, J. M., Prochaska, J. X., Worseck, G., Chen, H.-W. & Madau, P. The HST/ACS + WFC3 survey for Lyman limit systems. II. Science. Astrophys. J. 765, 137–165 (2013).

    Article  ADS  Google Scholar 

  33. Reimers, D. et al. The luminous quasar HS1700 + 6416 and the shape of the ‘big bump’ below 500 A. Astron. Astrophys. 218, 71–77 (1989).

    ADS  Google Scholar 

  34. Morton, D. C. Atomic data for resonance absorption lines. III. Wavelengths longward of the Lyman limit for the elements hydrogen to gallium. Astrophys. J. Suppl. 149, 205–238 (2003).

    Article  ADS  Google Scholar 

  35. Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487–498 (1996).

    Article  ADS  Google Scholar 

  36. Faucher-Giguére, C.-A., Lidz, A., Zaldarriaga, M. & Hernquist, L. A new calculation of the ionizing background spectrum and the effects of He ii reionization. Astrophys. J. 703, 1416–1443 (2009).

    Article  ADS  Google Scholar 

  37. Fumagalli, M. et al. Absorption-line systems in simulated galaxies fed by cold streams. Mon. Not. R. Astron. Soc. 418, 1796–1821 (2011).

    Article  ADS  Google Scholar 

  38. Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999).

    Article  ADS  Google Scholar 

  39. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Worseck for discussions about the HST and COS data of this sightline. During this work, R.J.C. was supported by a Royal Society University Research Fellowship. We acknowledge support from STFC (ST/L00075X/1 and ST/P000541/1). This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 757535). This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-Infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. This research has made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Contributions

Both authors participated in the interpretation and commented on the manuscript. R.J.C. led the project and analysis, and was responsible for the text of the paper. M.F. was responsible for the ionization calculations.

Corresponding author

Correspondence to Ryan J. Cooke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooke, R.J., Fumagalli, M. Measurement of the primordial helium abundance from the intergalactic medium. Nat Astron 2, 957–961 (2018). https://doi.org/10.1038/s41550-018-0584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0584-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing