Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quark deconfinement as a supernova explosion engine for massive blue supergiant stars

Abstract

Blue supergiant stars develop into core-collapse supernovae—one of the most energetic outbursts in the Universe—when all nuclear burning fuel is exhausted in the stellar core. Previous attempts have failed to explain observed explosions of such stars, which have a zero-age main-sequence mass of 50 M or more. Here, we exploit the largely uncertain state of matter at high density, and connect the modelling of such stellar explosions with a first-order phase transition from nuclear matter to the quark–gluon plasma. The resulting energetic supernova explosions can account for a large variety of light curves, from peculiar type II supernovae to superluminous events. The remnants are neutron stars with a quark matter core, known as hybrid stars, of about 2 M at birth. A Galactic event of this kind could be observable owing to the release of a second neutrino burst. Its observation would confirm such a first-order phase transition at densities relevant for astrophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid EOS, phase diagram and supernova evolution.
Fig. 2: Simulation of the evolution of a supernova.
Fig. 3: Bolometric light curve of the supernova simulation launched from the 50 M ZAMS star with the hadron–quark phase transition.
Fig. 4: Neutrinos from the supernova simulation of the 50 M ZAMS star with the hadron–quark phase transition at tc after the core bounce.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study, including the hadron–quark hybrid EOS, are available from the corresponding author upon request.

References

  1. Janka, H.-T., Langanke, K., Marek, A., Martnez-Pinedo, G. & Müller, B. Theory of core-collapse supernovae. Phys. Rep. 442, 38–74 (2007).

    Article  ADS  Google Scholar 

  2. Gal-Yam, A. & Leonard, D. C. A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature 458, 865–867 (2009).

    Article  ADS  Google Scholar 

  3. Foley, R. J. et al. The diversity of massive star outbursts. I. Observations of SN2009ip, UGC 2773 OT2009-1, and their progenitors. Astrophys. J. 732, 32 (2011).

    Article  ADS  Google Scholar 

  4. Zhang, T. et al. Type IIn supernova SN 2010jl: optical observations for over 500 days after explosion. Astron. J. 144, 131 (2012).

    Article  ADS  Google Scholar 

  5. Mauerhan, J. C. et al. The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova. Mon. Not. R. Astron. Soc. 430, 1801–1810 (2013).

    Article  ADS  Google Scholar 

  6. Nicholl, M. et al. Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature 502, 346–349 (2013).

    Article  ADS  Google Scholar 

  7. Terreran, M. et al. Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature 1, 713–720 (2017).

    Google Scholar 

  8. Sumiyoshi, K., Yamada, S., Suzuki, H. & Chiba, S. Neutrino signals from the formation of black hole: a probe of equation of state of dense matter. Phys. Rev. Lett. 97, 091101 (2006).

    Article  ADS  Google Scholar 

  9. Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F.-K. & Liebendörfer, M. The neutrino signal from protoneutron star accretion and black hole formation. Astron. Astrophys. 499, 1–15 (2009).

    Article  ADS  Google Scholar 

  10. O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).

    Article  ADS  Google Scholar 

  11. Chan, C., Müller, B., Heger, A., Pakmor, R. & Springel, V. Black hole formation and fallback during the supernova explosion of a 40 M star. Astrophys. J. 852, L19 (2017).

    Article  ADS  Google Scholar 

  12. Woosley, S., Heger, A. & Weaver, T. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

    Article  ADS  Google Scholar 

  13. Umeda, H. & Nomoto, K. How much Ni-56 can be produced in core-collapse supernovae? Evolution and explosions of 30–100 M stars. Astrophys. J. 673, 1014 (2008).

    Article  ADS  Google Scholar 

  14. Antoniadis, J. et al. A massive pulsar in a compact relativistic binary. Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  15. Fonseca, E. et al. The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars. Astrophys. J. 832, 167 (2016).

    Article  ADS  Google Scholar 

  16. Liebendörfer, M. et al. A finite difference representation of neutrino radiation hydrodynamics for spherically symmetric general relativistic supernova simulations. Astrophys. J. Suppl. 150, 263 (2004).

    Article  ADS  Google Scholar 

  17. Typel, S., Röpke, G., Klähn, T., Blaschke, D. & Wolter, H. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81, 015803 (2010).

    Article  ADS  Google Scholar 

  18. Danielewicz, P., Lacey, R & Lynch, W. G. Determination of the equation of state of dense matter. Science 298, 1592–1596 2002).

    Article  ADS  Google Scholar 

  19. Lattimer, J. M. & Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J. 771, 51 (2013).

    Article  ADS  Google Scholar 

  20. Krüger, T., Tews, I., Hebeler, K. & Schwenk, A. Neutron matter from chiral effective field theory interactions. Phys. Rev. C 88, 025802 (2013).

    Article  ADS  Google Scholar 

  21. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  22. Bazavov, A. et al. Equation of state in (2 + 1)-flavor QCD. Phys. Rev. D 90, 094503 (2014).

    Article  ADS  Google Scholar 

  23. Borsányi, S. et al. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 730, 99 (2014).

    Article  ADS  Google Scholar 

  24. Bazavov, A. et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012).

    Article  ADS  Google Scholar 

  25. Kurkela, A., Fraga, E. S., Schaffner-Bielich, J. & Vuorinen, A. Constraining neutron star matter with quantum chromodynamics. Astrophys. J. 789, 127 (2014).

    Article  ADS  Google Scholar 

  26. Farhi, E. & Jaffe, R. Strange matter. Phys. Rev. D 30, 2379 (1984).

    Article  ADS  Google Scholar 

  27. Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  28. Takahara, M. & Sato, K. Phase transition in the newly born neutron star and neutrino emission from SN1987A. Prog. Theor. Phys. 80, 861–867 (1988).

    Article  ADS  Google Scholar 

  29. Gentile, N. A., Aufderheide, M. B., Mathews, G. J., Swesty, F. D. & Fuller, G. M. The QCD phase transition and supernova core collapse. Astrophys. J. 414, 701 (1993).

    Article  ADS  Google Scholar 

  30. Sagert, I. et al. Signals of the QCD phase transition in core-collapse supernovae. Phys. Rev. Lett. 102, 081101 (2009).

    Article  ADS  Google Scholar 

  31. Nakazato, K., Sumiyoshi, K. & Yamada, S. Astrophysical implications of equation of state for hadron–quark mixed phase: compact stars and stellar collapses. Phys. Rev. D 77, 103006 (2008).

    Article  ADS  Google Scholar 

  32. Kaltenborn, M. A. R., Bastian, N.-U. F. & Blaschke, D. B. Quark–nuclear hybrid star equation of state with excluded volume effects. Phys. Rev. D 96, 056024 (2017).

    Article  ADS  Google Scholar 

  33. Horowitz, C. J., Moniz, E. J. & Negele, J. W. Hadron structure in a simple model of quark/nuclear matter. Phys. Rev. D 31, 1689 (1985).

    Article  ADS  Google Scholar 

  34. Röpke, G., Blaschke, D. & Schulz, H. Pauli quenching effects in a simple string model of quark/nuclear matter. Phys. Rev. D 34, 3499 (1986).

    Article  ADS  Google Scholar 

  35. Klähn, T. & Fischer, T. Vector interaction enhanced bag model for astrophysical applications. Astrophys. J. 810, 134 (2015).

    Article  ADS  Google Scholar 

  36. Benić, S., Blaschke, D., Alvarez-Castillo, D. E., Fischer, T. & Typel, S. A new quark–hadron hybrid equation of state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys. 577, A40 (2015).

    Article  ADS  Google Scholar 

  37. De, S. et al. Constraining the nuclear equation of state with GW170817. Phys. Rev. Lett. 121, 091102 (2018).

    Article  ADS  Google Scholar 

  38. Bethe, H. A. & Wilson, J. R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14 (1985).

    Article  ADS  Google Scholar 

  39. LeBlanc, J. M. & Wilson, J. R. A numerical example of the collapse of a rotating magnetized star. Astrophys. J. 161, 541 (1970).

    Article  ADS  Google Scholar 

  40. Bisnovatyi-Kogan, G. S., Popov, I. P. & Samokhin, A. A. The magnetohydrodynamic rotational model of supernova explosion. Astrophys. Space Sci. 41, 287–320 (1976).

    Article  ADS  Google Scholar 

  41. Bruenn, S. W. et al. Axisymmetric ab initio core-collapse supernova simulations of 12–25 M stars. Astrophys. J. 767, L6 (2013).

    Article  ADS  Google Scholar 

  42. Müller, B., Janka, H.-Th & Marek, A. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explosion models of core-collapse supernovae. Astrophys. J. 756, 84 (2012).

    Article  ADS  Google Scholar 

  43. Suwa, Y. et al. On the importance of the equation of state for the neutrino-driven supernova explosion mechanism. Astrophys. J. 764, 99 (2013).

    Article  ADS  Google Scholar 

  44. Melson, T., Janka, H.-Th & Marek, A. Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection. Astrophys. J. 801, L24 (2015).

    Article  ADS  Google Scholar 

  45. Wu, M.-R., Fernández, R., Martnez-Pinedo, G. & Metzger, B. D. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon. Not. R. Astron. Soc. 463, 2323–2334 (2016).

    Article  ADS  Google Scholar 

  46. Smith, N. et al. SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η Carinae. Astrophys. J. 666, 1116 (2007).

    Article  ADS  Google Scholar 

  47. Moriya, T. J. et al. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium. Mon. Not. R. Astron. Soc. 428, 1020–1035 (2013).

    Article  ADS  Google Scholar 

  48. Mirizzi, A. et al. Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39, 1–112 (2016).

    Google Scholar 

  49. Dasgupta, B. et al. Detecting the QCD phase transition in the next Galactic supernova neutrino burst. Phys. Rev. D 81, 103005 (2010).

    Article  ADS  Google Scholar 

  50. Tauris, T., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions—I. PSR J1614-2230: evidence for a neutron star born massive. Mon. Not. R. Astron. Soc. 416, 2130–2142 (2011).

    Article  ADS  Google Scholar 

  51. Tauris, T., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions—II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions. Mon. Not. R. Astron. Soc. 425, 1601–1627 (2012).

    Article  ADS  Google Scholar 

  52. Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M. & Janka, H.-T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 45 (2016).

    Article  Google Scholar 

  53. Paczyński, B. Evolutionary processes in close binary systems. Annu. Rev. Astron. Astrophys. 9, 183 (1971).

    Article  ADS  Google Scholar 

  54. Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).

    Article  ADS  Google Scholar 

  55. Antoniadis, J. et al. The millisecond pulsar mass distribution: evidence for bimodality and constraints on the maximum neutron star mass. Preprint at https://arxiv.org/abs/1605.01665 (2016).

  56. Mezzacappa, A. & Bruenn, S. A numerical method for solving the neutrino Boltzmann equation coupled to spherically symmetric stellar core collapse. Astrophys. J. 405, 669 (1993).

    Article  ADS  Google Scholar 

  57. Liebendoerfer, M., Rosswog, S. & Thielemann, F.-K. An adaptive grid, implicit code for spherically symmetric, general relativistic hydrodynamics in comoving coordinates. Astrophys. J. Suppl. 141, 229 (2002).

    Article  ADS  Google Scholar 

  58. Wu, M.-R., Qian, Y.-Z., Martnez-Pinedo, G., Fischer, T. & Huther, L. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model. Phys. Rev. D 91, 065016 (2015).

    Article  ADS  Google Scholar 

  59. Scholberg, K. Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81–103 (2012).

    Article  ADS  Google Scholar 

  60. Patrignani, C. et al. (Particle Data Group) Review of particle physics. Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  61. Blinnikov, S. I. et al. Theoretical light curves for deflagration models of type Ia supernova. Astron. Astrophys. 453, 229–240 (2006).

    Article  ADS  Google Scholar 

  62. Sorokina, E. I., Blinnikov, S. I., Nomoto, K., Quimby, R. & Tolstov, A. Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. Astrophys. J. 829, 17 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K.-J. Chen for discussions about possible implications regarding the supernova light curve, H. Umeda for details of the stellar model used in this work, and A. Yudin for helpful discussions regarding neutrino processes. The supernova simulations were performed at the Wroclaw Center for Networking and Supercomputing. The authors acknowledge support from the Polish National Science Center under grant numbers UMO-2016/23/B/ST2/00720 (to T.F. and N.-U.F.B.) and DEC-2011/02/A/ST2/00306 (to T.F., N.-U.F.B. and D.B.B.), Russian Science Foundation under grant numbers 16–12–10519 (to P.B. and E.S.) and 18–12–00522 (to S.B.) and Ministry of Science and Technology (Taiwan) under grant number 107-2119-M-001-038 (to M.-R.W.). D.B.B. is further supported by the MEPhI Academic Excellence Project under contract number 02.a03.21.0005, and S.T. acknowledges the DFG through grant SFB1245. This work was supported by the COST Actions CA15213 (THOR), CA16117 (ChETEC) and CA16214 (PHAROS).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript. T.F. wrote the paper, implemented the hadron–quark EOS in the supernova model, performed all the supernova simulations and analysed the corresponding results. N.-U.F.B., D.B.B. and T.K. developed the new quark EOS and the extension to finite temperatures and arbitrary isospin asymmetry. S.T. provided the hadronic EOS selected for this study. M.-R.W. performed the neutrino detection analysis and nucleosynthesis calculations for the prediction of the elemental yields. P.B., E.S. and S.B. performed the light curve analysis. All authors commented on the manuscript draft.

Corresponding author

Correspondence to Tobias Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary text, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, T., Bastian, NU.F., Wu, MR. et al. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nat Astron 2, 980–986 (2018). https://doi.org/10.1038/s41550-018-0583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0583-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing