Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational signatures of massive black hole formation in the early Universe

Abstract

Space telescope observations of massive black holes during their formation may be key to understanding the origin of supermassive black holes and high-redshift quasars. To create diagnostics for their detection and confirmation, we study a simulation of a nascent massive ‘direct-collapse’ black hole that induces a wave of nearby massive metal-free star formation, unique to this seeding scenario and to very high redshifts. Here we describe a series of distinct colours and emission line strengths, dependent on the relative strength of star formation and black hole accretion. We predict that the forthcoming James Webb Space Telescope might be able to detect and distinguish a young galaxy that hosts a direct-collapse black hole in this configuration at redshift 15 with as little as a 20,000-second total exposure time across four filters, critical for constraining the seeding mechanisms and early growth rates of supermassive black holes. We also find that a massive seed black hole produces strong, H2-dissociating Lyman–Werner radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Evolution of the halo and the radiation field.
Fig. 2: Evolution of the radiation field over time by source in the rest frame.
Fig. 3: The intrinsic and processed spectra of the DCBH and DCBH-less scenarios.
Fig. 4: J356w – J277w and J200w – J277w colour–colour plot.
Fig. 5: Exposure time needed to confirm a DCBH observation with S/N of 5.

Data availability

The radiative transfer pipeline uses the publicly available Hyperion (http://www.hyperion-rt.org), Cloudy (http://www.nublado.org), Yggdrasil (http://ttt.astro.su.se/ez/) and FSPS (http://dfm.io/python-fsps/current/) codes. Prior work23,30 exhaustively describes the steps required to build and integrate the pipeline. Enzo is available at (http://enzo-project.org).

References

  1. 1.

    Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization with z ~ 6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117–136 (2006).

    ADS  Article  Google Scholar 

  2. 2.

    Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Wang, F. et al. A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. Astrophys. J. 819, 24 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Bañados, E. et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Edgar, R. A review of Bondi–Hoyle–Lyttleton accretion. New Astron. Rev. 48, 843–859 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    Yuan, F. & Narayan, R. Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52–61 (1994).

    ADS  Article  Google Scholar 

  9. 9.

    Bromm, V. & Loeb, A. Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    O’Shea, B. W. & Norman, M. L. Population III star formation in a ΛCDM universe. II. Effects of a photodissociating background. Astrophys. J. 673, 14–33 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Dijkstra, M., Haiman, Z., Mesinger, A. & Wyithe, J. S. B. Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes. Mon. Not. R. Astron. Soc. 391, 1961–1972 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Omukai, K. Primordial star formation under far-ultraviolet radiation. Astrophys. J. 546, 635–651 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. R. Astron. Soc. 338, 273–286 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    ADS  Article  Google Scholar 

  15. 15.

    Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. R. Astron. Soc. 446, 2380–2393 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Bryan, G. L. et al. Enzo: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. 211, 19 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Chon, S., Hirano, S., Hosokawa, T. & Yoshida, N. Cosmological simulations of early black hole formation: halo mergers, tidal disruption, and the conditions for direct collapse. Astrophys. J. 832, 134 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Dijkstra, M., Ferrara, A. & Mesinger, A. Feedback-regulated supermassive black hole seed formation. Mon. Not. R. Astron. Soc. 442, 2036–2047 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Habouzit, M. et al. Black hole formation and growth with non-Gaussian primordial density perturbations. Mon. Not. R. Astron. Soc. 456, 1901–1912 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Visbal, E., Haiman, Z. & Bryan, G. L. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. R. Astron. Soc. 445, 1056–1063 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Regan, J. A. et al. Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat. Astron. 1, 0075 (2017).

    Article  Google Scholar 

  23. 23.

    Barrow, K. S. S. et al. First light—II. Emission line extinction, population III stars, and X-ray binaries. Mon. Not. R. Astron. Soc. 474, 2617–2634 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Bromm, V. & Loeb, A. The formation of the first low-mass stars from gas with low carbon and oxygen abundances. Nature 425, 812–814 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C. & Maeda, K. Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A. 777, 424–458 (2006).

    ADS  Article  Google Scholar 

  28. 28.

    O’Shea, B. W., Wise, J. H., Xu, H. & Norman, M. L. Probing the ultraviolet luminosity function of the earliest galaxies with the Renaissance Simulations. Astrophys. J. Lett. 807, L12 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Xu, H., Wise, J. H., Norman, M. L., Ahn, K. & O’Shea, B. W. Galaxy properties and UV escape fractions during the epoch of reionization: results from the Renaissance Simulations. Astrophys. J. 833, 84 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Barrow, K. S. S., Wise, J. H., Norman, M. L., O’Shea, B. W. & Xu, H. First light: exploring the spectra of high-redshift galaxies in the Renaissance Simulations. Mon. Not. R. Astron. Soc. 469, 4863–4878 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Larson, D. et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Wise, J. H. & Abel, T. Suppression of H2 cooling in the ultraviolet background. Astrophys. J. 671, 1559–1567 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Stecher, T. P. & Williams, D. A. Photodestruction of hydrogen molecules in H i regions. Astrophys. J. Lett. 149, L29 (1967).

    ADS  Article  Google Scholar 

  34. 34.

    Spaans, M. & Silk, J. Pregalactic black hole formation with an atomic hydrogen equation of state. Astrophys. J. 652, 902–906 (2006).

    ADS  Article  Google Scholar 

  35. 35.

    Aykutalp, A., Wise, J. H., Meijerink, R. & Spaans, M. The response of metal-rich gas to X-ray irradiation from a massive black hole at high redshift: proof of concept. Astrophys. J. 771, 50 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Kim, J.-h, Wise, J. H., Alvarez, M. A. & Abel, T. Galaxy formation with self-consistently modeled stars and massive black holes. I. Feedback-regulated star formation and black hole growth. Astrophys. J. 738, 54 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Zdziarski, A. A., Johnson, W. N., Done, C., Smith, D. & McNaron-Brown, K. The average X-ray/gamma-ray spectra of Seyfert galaxies from GINGA and OSSE and the origin of the cosmic X-ray background. Astrophys. J. Lett. 438, L63–L66 (1995).

    ADS  Article  Google Scholar 

  39. 39.

    Schleicher, D. R. G., Spaans, M. & Klessen, R. S. Probing high-redshift quasars with ALMA. I. Expected observables and potential number of sources. Astron. Astrophys. 513, A7 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  41. 41.

    Meijerink, R. & Spaans, M. Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code. Astron. Astrophys. 436, 397–409 (2005).

    ADS  Article  Google Scholar 

  42. 42.

    Mellema, G., Iliev, I. T., Alvarez, M. A. & Shapiro, P. R. C2-ray: a new method for photon-conserving transport of ionizing radiation. New Astron. 11, 374–395 (2006).

    ADS  Article  Google Scholar 

  43. 43.

    Wise, J. H. & Abel, T. Enzo + Moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Mon. Not. R. Astron. Soc. 414, 3458–3491 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    Abel, T., Anninos, P., Zhang, Y. & Norman, M. L. Modeling primordial gas in numerical cosmology. New Astron. 2, 181–207 (1997).

    ADS  Article  Google Scholar 

  45. 45.

    Ricotti, M., Gnedin, N. Y. & Shull, J. M. Feedback from galaxy formation: production and photodissociation of primordial H2. Astrophys. J. 560, 580–591 (2001).

    ADS  Article  Google Scholar 

  46. 46.

    Abel, T., Wise, J. H. & Bryan, G. L. The H ii region of a primordial star. Astrophys. J. Lett. 659, L87–L90 (2007).

    ADS  Article  Google Scholar 

  47. 47.

    Wise, J. H., Abel, T., Turk, M. J., Norman, M. L. & Smith, B. D. The birth of a galaxy—II. The role of radiation pressure. Mon. Not. R. Astron. Soc. 427, 311–326 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    O’Shea, B. W. & Norman, M. L. Population III star formation in a ΛCDM universe. I. The effect of formation redshift and environment on protostellar accretion rate. Astrophys. J. 654, 66–92 (2007).

    ADS  Article  Google Scholar 

  49. 49.

    Ebisawa, K., Życki, P., Kubota, A., Mizuno, T. & Watarai, K.-y Accretion disk spectra of ultraluminous X-ray sources in nearby spiral galaxies and galactic superluminal jet sources. Astrophys. J. 597, 780–797 (2003).

    ADS  Article  Google Scholar 

  50. 50.

    Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 Ms Chandra Deep Field-South. Astrophys. J. 825, 7 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Madau, P. & Fragos, T. Radiation backgrounds at cosmic dawn: X-rays from compact binaries. Astrophys. J. 840, 39 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Schaerer, D. On the properties of massive population III stars and metal-free stellar populations. Astron. Astrophys. 382, 28–42 (2002).

    ADS  Article  Google Scholar 

  53. 53.

    Zackrisson, E., Rydberg, C.-E., Schaerer, D., Östlin, G. & Tuli, M. The spectral evolution of the first galaxies. I. James Webb Space Telescope detection limits and color criteria for population III galaxies. Astrophys. J. 740, 13 (2011).

    ADS  Article  Google Scholar 

  54. 54.

    Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. de Astrono. y Astrofs. 49, 137–163 (2013).

    ADS  Google Scholar 

  55. 55.

    Robitaille, T. P. HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. Astron. Astrophys. 536, A79 (2011).

    ADS  Article  Google Scholar 

  56. 56.

    Perrin, M. D., Soummer, R., Elliott, E. M., Lallo, M. D. & Sivaramakrishnan, A. in Proc. SPIE 8442, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 84423D (2012).

  57. 57.

    Pontoppidan, K. M. et al. in Proc. SPIE 9910 , Observatory Operations: Strategies, Processes, and Systems VI, 991016 (2016).

  58. 58.

    Pacucci, F. et al. First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. Mon. Not. R. Astron. Soc. 459, 1432–1439 (2016).

    ADS  Article  Google Scholar 

  59. 59.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  60. 60.

    Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ~ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009).

    ADS  Article  Google Scholar 

  61. 61.

    Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).

    ADS  Article  Google Scholar 

  62. 62.

    Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

K.S.S.B. acknowledges support from the Southern Regional Education Board doctoral fellowship. A.A. acknowledges support from LANL LDRD Exploratory Research Grant 20170317ER. A.A. and J.H.W. acknowledge support from National Science Foundation (NSF) grant AST-1333360. J.H.W. acknowledges support from NSF grant AST-1614333, Hubble theory grants HST-AR-13895 and HST-AR-14326, and NASA grant NNX-17AG23G.

Author information

Affiliations

Authors

Contributions

K.S.S.B. developed and implemented the radiative transfer pipeline, performed the analysis and prepared the manuscript. A.A. implemented X-ray-dominated region feedback into Enzo and performed the hydrodynamical simulation. J.H.W. conceived the collaboration and provided technical assistance to both K.S.S.B. and A.A. All authors contributed to the text of the final manuscript.

Corresponding author

Correspondence to Kirk S. S. Barrow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrow, K.S.S., Aykutalp, A. & Wise, J.H. Observational signatures of massive black hole formation in the early Universe. Nat Astron 2, 987–994 (2018). https://doi.org/10.1038/s41550-018-0569-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing