Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan

Abstract

The orbital distribution of trans-Neptunian objects provides strong evidence for the radial migration of Neptune1,2. The outer planets’ orbits are thought to have become unstable during the early stages3, with Jupiter having scattering encounters with a Neptune-class planet4. As a consequence, Jupiter jumped inwards by a fraction of an au, as required from inner Solar System constraints5,6, and obtained its current orbital eccentricity. The timing of these events is often linked to the lunar Late Heavy Bombardment that ended ~700 Myr after the dispersal of the protosolar nebula (t0)7,8. Here, we show instead that planetary migration started shortly after t0. Such early migration is inferred from the survival of the Patroclus–Menoetius binary Jupiter Trojan9. The binary formed at tt010,11 within a massive planetesimal disk once located beyond Neptune12,13. The longer the binary stayed in the disk, the greater the likelihood that collisions would strip its components from one another. The simulations of its survival indicate that the disk had to have been dispersed by migrating planets within 100 Myr of t0. This constraint implies that the planetary migration is unrelated to the formation of the youngest lunar basins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dynamical survival of binaries before their implantation onto Jupiter Trojan orbits.
Fig. 2: Collisional survival of binaries in the outer planetesimal disk.
Fig. 3: Size distribution of Jupiter Trojans.
Fig. 4: Survival of binaries in the case when the planet migration was initiated immediately after t0 (that is, tdisk = 0).

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Hahn, J. M. & Malhotra, R. Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005).

    ADS  Article  Google Scholar 

  2. 2.

    Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R. & Tsiganis, K. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Agnor, C. B. & Lin, D. N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Merline, W. J. et al. S/2001 (617) 1. Int. J. Astron. Union Circ. 7741, 2 (2001).

    ADS  Google Scholar 

  10. 10.

    Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002).

    ADS  Article  Google Scholar 

  11. 11.

    Nesvorný, D., Youdin, A. N. & Richardson, D. C. Formation of Kuiper belt binaries by gravitational collapse. Astron. J. 140, 785–793 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Nesvorný, D., Vokrouhlický, D. & Morbidelli, A. Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Emery, J. P., Marzari, F., Morbidelli, A., French, L. M. & Grav, T. in Asteroids IV 203–220 (Univ. Arizona Press, Tucson, 2015).

    Google Scholar 

  15. 15.

    Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A. & Batygin, K. The absolute magnitude distribution of Kuiper belt objects. Astrophys. J. 782, 100 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Grav, T. et al. WISE/NEOWISE observations of the Jovian Trojans: preliminary results. Astrophys. J. 742, 40 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Buie, M. W. et al. Size and shape from stellar occultation observations of the double Jupiter Trojan Patroclus and Menoetius. Astron. J. 149, 113 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Parker, A. H. & Kavelaars, J. J. Destruction of binary minor planets during Neptune scattering. Astrophys. J. 722, L204–L208 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Mueller, M. et al. Eclipsing binary Trojan asteroid Patroclus: thermal inertia from Spitzer observations. Icarus 205, 505–515 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Agnor, C. B. & Hamilton, D. P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006).

    ADS  Article  Google Scholar 

  21. 21.

    Marchis, F. et al. The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor. Astrophys. J. 783, L37 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Sonnett, S., Mainzer, A., Grav, T., Masiero, J. & Bauer, J. Binary candidates in the Jovian Trojan and Hilda populations from NEOWISE light curves. Astrophys. J. 799, 191 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Noll, K. S., Grundy, W. M., Chiang, E. I., Margot, J.-L. & Kern, S. D. in The Solar System Beyond Neptune 345–363 (Univ. Arizona Press, Tucson, 2008).

  24. 24.

    Nesvorný, D. Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. Astron. J. 150, 73 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS  Article  Google Scholar 

  26. 26.

    Wong, I. & Brown, M. E. The color-magnitude distribution of small Jupiter Trojans. Astron. J. 150, 174 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Nesvorný, D., Roig, F. & Bottke, W. F. Modeling the historical flux of planetary impactors. Astron. J. 153, 103 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Bottke, W. F., Levison, H. F., Nesvorný, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Gomes, R. S., Morbidelli, A. & Levison, H. F. Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004).

    ADS  Article  Google Scholar 

  32. 32.

    Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    ADS  Article  Google Scholar 

  33. 33.

    Nesvorný, D., Parker, J. & Vokrouhlický, D. Bi-lobed shape of Comet 67P from a collapsed binary. Astron. J. 155, 246 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1992).

  35. 35.

    Petit, J.-M. & Mousis, O. KBO binaries: how numerous were they? Icarus 168, 409–419 (2004).

    ADS  Article  Google Scholar 

  36. 36.

    Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS  Article  Google Scholar 

  37. 37.

    Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Noll, K. & Levison, H. F. Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper belt. Astron. J. 141, 159 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Durda, D. D. et al. Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus 186, 498–516 (2007).

    ADS  Article  Google Scholar 

  39. 39.

    Leinhardt, Z. M. & Stewart, S. T. Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Jutzi, M., Michel, P., Benz, W. & Richardson, D. C. Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207, 54–65 (2010).

    ADS  Article  Google Scholar 

  41. 41.

    Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Morbidelli, A. & Rickman, H. Comets as collisional fragments of a primordial planetesimal disk. Astron. Astrophys. 583, A43 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Wetherill, G. W. Collisions in the asteroid belt. J. Geophys. Res. 72, 2429 (1967).

    ADS  Article  Google Scholar 

  44. 44.

    Greenberg, R. Orbital interactions—a new geometrical formalism. Astron. J. 87, 184–195 (1982).

    ADS  Article  Google Scholar 

  45. 45.

    Davis, D. R., Durda, D. D., Marzari, F., Campo Bagatin, A. & Gil-Hutton, R. in Asteroids III 545–558 (Univ. Arizona Press, Tucson, 2002).

  46. 46.

    Dell’Oro, A. & Cellino, A. The random walk of Main Belt asteroids: orbital mobility by non-destructive collisions. Mon. Not. R. Astron. Soc. 380, 399–416 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NASA’s SSERVI and Emerging Worlds programmes, and the Czech Science Foundation (grant 18-06083S). We thank A. Morbidelli for helpful suggestions.

Author information

Affiliations

Authors

Contributions

D.N. had the original idea, performed the simulations and prepared the manuscript for publication. D.V. developed the binary module in the collision code and the N-body code for planetary encounters. D.V., W.F.B. and H.F.L. suggested additional tests and helped to improve the manuscript.

Corresponding author

Correspondence to David Nesvorný.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary References, Supplementary Figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nesvorný, D., Vokrouhlický, D., Bottke, W.F. et al. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat Astron 2, 878–882 (2018). https://doi.org/10.1038/s41550-018-0564-3

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing