Predicting the corona for the 21 August 2017 total solar eclipse

Abstract

The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels. We predicted what the corona would look like one week before the eclipse. Here, we describe how this prediction was accomplished, and show that it compared favourably with observations of the eclipse in white light and extreme ultraviolet. The model allows us to understand the relationship of observed features, including streamers, coronal holes, prominences, polar plumes and thin rays, to the magnetic field. We show that the discrepancies between the model and observations arise from limitations in our ability to observe the Sun’s magnetic field. Predictions of this kind provide opportunities to improve the models, forging the path to improved space weather prediction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison between the observed and predicted eclipse corona for the 21 August 2017 total solar eclipse.
Fig. 2: Comparison between observed and predicted EUV emission.
Fig. 3: Investigating the origin of equatorial rays.
Fig. 4: Comparison between observed features and model predictions.
Fig. 5: Polarity inversion line (PIL) comparison on 14 August 2017.

References

  1. 1.

    Pasachoff, J. M. Solar eclipses as an astrophysical laboratory. Nature 459, 789–795 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    Habbal, S. R., Morgan, H. & Druckmüller, M. Exploring the prominence-corona connection and its expansion into the outer corona using total solar eclipse observations. Astrophys. J. 793, 119 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Pasachoff, J. M. Astrophysics: the great solar eclipse of 2017. Sci. Am. 317, 54–61 (2017).

    Article  Google Scholar 

  4. 4.

    Parnell, C. E. & De Moortel, I. A contemporary view of coronal heating. Phil. Trans. R. Soc. Lond. A370, 3217–3240 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Priest, E. Magnetohydrodynamics of the Sun (Cambridge University Press, New York, 2014).

  6. 6.

    Klimchuk, J. A. Key aspects of coronal heating. Phil. Trans. R. Soc. Lond. A 373, 20140256 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Amari, T., Canou, A., Aly, J.-J., Delyon, F. & Alauzet, F. Magnetic cage and rope as the key for solar eruptions. Nature 554, 211–215 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Vivès, S., Lamy, P., Koutchmy, S. & Arnaud, J. ASPIICS, a giant externally occulted coronagraph for the PROBA-3 formation flying mission. Adv. Space. Res. 43, 1007–1012 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Habbal, S. R. et al. Mapping the distribution of electron temperature and Fe charge states in the corona with total solar eclipse observations. Astrophys. J. 708, 1650–1662 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Habbal, S. R. et al. Thermodynamics of the solar corona and evolution of the solar magnetic field as inferred from the total solar eclipse observations of 2010 July 11. Astrophys. J. 734, 120 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Pasachoff, J. M. Heliophysics at total solar eclipses. Nat. Astron. 1, 0190 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Dyson, F. W., Eddington, A. S. & Davidson, C. A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Phil. Trans. R. Soc. Lond. A 220, 291–333 (1920).

    ADS  Article  Google Scholar 

  13. 13.

    Hawking, S. A Brief History of Time: From the Big Bang to Black Holes (Bantam Books, New York, 1988).

  14. 14.

    Kennefick, D. Testing relativity from the 1919 eclipse—a question of bias. Phys. Today 62, 37 (March 2009).

  15. 15.

    Schindler, S. Theory-laden experimentation. Stud. History Phil. Sci. Part A 44, 89–101 (2013).

    Article  Google Scholar 

  16. 16.

    Mikić, Z., Linker, J. A., Riley, P. & Lionello, R. in Last Total Solar Eclipse of the Millennium Vol. 205 (eds Livingston, W. & Özgüç, A.) 162 (Astronomical Society of the Pacific, San Francisco, 2000).

  17. 17.

    Mikić, Z., Linker, J. A., Lionello, R., Riley, P. & Titov, V. in Solar and Stellar Physics Through Eclipses Vol. 370 (eds Demircan, O., Selam, S. O. & Albayrak, B.) 299 (Astronomical Society of the Pacific, San Francisco, 2007).

  18. 18.

    Rušin, V. et al. Comparing eclipse observations of the 2008 August 1 solar corona with an MHD model prediction. Astron. Astrophys. 513, A45 (2010).

    Article  Google Scholar 

  19. 19.

    Nandy, D. et al. The large-scale coronal structure of the 2017 August 21 Great American Eclipse: an assessment of solar surface flux transport model enabled predictions and observations. Astrophys. J. 853, 72 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Mikić, Z., Linker, J. A., Schnack, D. D., Lionello, R. & Tarditi, A. Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217–2224 (1999).

    ADS  Article  Google Scholar 

  21. 21.

    Lionello, R., Linker, J. A. & Mikić, Z. Multispectral emission of the Sun during the first Whole Sun Month: magnetohydrodynamic simulations. Astrophys. J. 690, 902–912 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Downs, C. et al. Probing the solar magnetic field with a Sun-grazing comet. Science 340, 1196–1199 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Scherrer, P. H. et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 207–227 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3–15 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Lionello, R. et al. Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784, 120 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Lionello, R., Velli, M., Downs, C., Linker, J. A. & Mikić, Z. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration. Astrophys. J. 796, 111 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Downs, C., Lionello, R., Mikić, Z., Linker, J. A. & Velli, M. Closed-field coronal heating driven by wave turbulence. Astrophys. J. 832, 180 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J. & Dmitruk, P. Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. 523, L93–L96 (1999).

    ADS  Article  Google Scholar 

  29. 29.

    Wang, Y.-M., Sheeley, N. R. Jr & Rich, N. B. Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Martin, S. F. Conditions for the formation and maintenance of filaments (invited review). Sol. Phys. 182, 107–137 (1998).

    ADS  Article  Google Scholar 

  31. 31.

    Mackay, D. H., Gaizauskas, V. & Yeates, A. R. Where do solar filaments form?: consequences for theoretical models. Sol. Phys. 248, 51–65 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B. & Aulanier, G. Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333–399 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Yeates, A. R. Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Sol. Phys. 289, 631–648 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Billings, D. E. A Guide to the Solar Corona (Academic Press, New York, 1966).

    Google Scholar 

  36. 36.

    Golub, L. & Pasachoff, J. M. The Solar Corona 2nd edn (Cambridge University Press, New York, 2010).

  37. 37.

    Mok, Y., Mikić, Z., Lionello, R., Downs, C. & Linker, J. A. A three-dimensional model of active region 7986: comparison of simulations with observations. Astrophys. J. 817, 15 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Titov, V. S. Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863–873 (2007).

    ADS  Article  Google Scholar 

  39. 39.

    Druckmüller, M. A noise adaptive fuzzy equalization method for processing solar extreme ultraviolet images. Astrophys. J. Suppl. 207, 25 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Newkirk, G. Jr, Dupree, R. G. & Schmahl, E. J. Magnetic fields and the structure of the solar corona. II: observations of the 12 November 1966 solar corona. Sol. Phys. 15, 15–39 (1970).

    ADS  Article  Google Scholar 

  41. 41.

    Titov, V. S., Mikić, Z., Linker, J. A., Lionello, R. & Antiochos, S. K. Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Antiochos, S. K., Mikić, Z., Titov, V. S., Lionello, R. & Linker, J. A. A model for the sources of the slow solar wind. Astrophys. J. 731, 112 (2011).

    ADS  Article  Google Scholar 

  43. 43.

    Linker, J. A., Lionello, R., Mikić, Z., Titov, V. S. & Antiochos, S. K. The evolution of open magnetic flux driven by photospheric dynamics. Astrophys. J. 731, 110 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    Wang, Y.-M. et al. The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophys. J. 660, 882–892 (2007).

    ADS  Article  Google Scholar 

  45. 45.

    Pasachoff, J. M. et al. Polar plume brightening during the 2006 March 29 total eclipse. Astrophys. J. 682, 638–643 (2008).

    ADS  Article  Google Scholar 

  46. 46.

    Morgan, H. & Druckmüller, M. Multi-scale Gaussian normalization for solar image processing. Sol. Phys. 289, 2945–2955 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Gibson, S. in Solar Prominences Astrophysics and Space Science Library Vol. 415 (eds Vial, J.-C. & Engvold, O.) 323–353 (Springer Nature, Switzerland, 2015).

  48. 48.

    Tomczyk, S. et al. An instrument to measure coronal emission line polarization. Sol. Phys. 247, 411–428 (2008).

    ADS  Article  Google Scholar 

  49. 49.

    Mackay, D. H., Yeates, A. R. & Bocquet, F.-X. Impact of an L5 magnetograph on nonpotential solar global magnetic field modeling. Astrophys. J. 825, 131 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Schrijver, C. J. & DeRosa, M. L. Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003).

    ADS  Article  Google Scholar 

  51. 51.

    Arge, C. N. et al. Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. Twelfth Int. Solar Wind Conf. 216, 343–346 (2010).

    ADS  Google Scholar 

  52. 52.

    Hickmann, K. S., Godinez, H. C., Henney, C. J. & Arge, C. N. Data assimilation in the ADAPT Photospheric Flux Transport model. Sol. Phys. 290, 1105–1118 (2015).

    ADS  Article  Google Scholar 

  53. 53.

    Upton, L. & Hathaway, D. H. Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014).

    ADS  Article  Google Scholar 

  54. 54.

    Mikić, Z. & Linker, J. A. Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898–912 (1994).

    ADS  Article  Google Scholar 

  55. 55.

    Lionello, R., Mikić, Z. & Schnack, D. D. Magnetohydrodynamics of solar coronal plasmas in cylindrical geometry. J. Comput. Phys. 140, 1–30 (1998).

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Lionello, R., Mikić, Z. & Linker, J. A. Stability of algorithms for waves with large flows. J. Comput. Phys. 152, 346–358 (1999).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Lionello, R., Linker, J. A. & Mikić, Z. Including the transition region in models of the large-scale solar corona. Astrophys. J. 546, 542–551 (2001).

    ADS  Article  Google Scholar 

  58. 58.

    Caplan, R. M., Mikić, Z., Linker, J. A. & Lionello, R. Advancing parabolic operators in thermodynamic MHD models: explicit super time-stepping versus implicit schemes with Krylov solvers. J. Phys. Conf. Ser. 837, 012016 (2017).

  59. 59.

    Riley, P. et al. Global MHD modeling of the solar corona and inner heliosphere for the Whole Heliosphere Interval. Sol. Phys. 274, 361–377 (2011).

    ADS  Article  Google Scholar 

  60. 60.

    Lionello, R. et al. Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys. J. 777, 76 (2013).

    ADS  Article  Google Scholar 

  61. 61.

    Schou, J. et al. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012).

    ADS  Article  Google Scholar 

  62. 62.

    Lionello, R., Mikić, Z., Linker, J. A. & Amari, T. Magnetic field topology in prominences. Astrophys. J. 581, 718–725 (2002).

    ADS  Article  Google Scholar 

  63. 63.

    Downs, C. et al. Toward a realistic thermodynamic magnetohydrodynamic model of the global solar corona. Astrophys. J. 712, 1219–1231 (2010).

    ADS  Article  Google Scholar 

  64. 64.

    Caplan, R. M., Downs, C. & Linker, J. A. Synchronic coronal hole mapping using multi-instrument EUV images: data preparation and detection method. Astrophys. J. 823, 53 (2016).

    ADS  Article  Google Scholar 

  65. 65.

    Linker, J. A. et al. The open flux problem. Astrophys. J. 848, 70 (2017).

    ADS  Article  Google Scholar 

  66. 66.

    Hannah, I. G. & Kontar, E. P. Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146 (2012).

    ADS  Article  Google Scholar 

  67. 67.

    Tomczyk, S. et al. Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory. J. Geophys. Res. (Space Phys.) 121, 7470–7487 (2016).

    ADS  Article  Google Scholar 

  68. 68.

    Landi, E., Young, P. R., Dere, K. P., Del Zanna, G. & Mason, H. E. CHIANTI—an atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86 (2013).

    ADS  Article  Google Scholar 

  69. 69.

    Liu, Y. et al. Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Sol. Phys. 279, 295–316 (2012).

    ADS  Article  Google Scholar 

  70. 70.

    Riley, P. et al. A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Sol. Phys. 289, 769–792 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Mikić, Z., Lionello, R., Mok, Y., Linker, J. A. & Winebarger, A. R. The importance of geometric effects in coronal loop models. Astrophys. J. 773, 94 (2013).

    ADS  Article  Google Scholar 

  72. 72.

    Linker, J. et al. MHD simulation of the Bastille day event. AIP Conf. Ser. 1720, 020002 (2016).

    Google Scholar 

  73. 73.

    Heinemann, M. & Olbert, S. Non-WKB Alfven waves in the solar wind. J. Geophys. Res. 85, 1311–1327 (1980).

    ADS  Article  Google Scholar 

  74. 74.

    Zank, G. P., Matthaeus, W. H. & Smith, C. W. Evolution of turbulent magnetic fluctuation power with heliospheric distance. J. Geophys. Res. 101, 17093–17108 (1996).

    ADS  Article  Google Scholar 

  75. 75.

    Zank, G. P. et al. The transport of low-frequency turbulence in astrophysical flows. I. Governing equations. Astrophys. J. 745, 35 (2012).

    ADS  Article  Google Scholar 

  76. 76.

    Velli, M. On the propagation of ideal, linear Alfven waves in radially stratified stellar atmospheres and winds. Astron. Astrophys. 270, 304–314 (1993).

    ADS  Google Scholar 

  77. 77.

    Dmitruk, P., Milano, L. J. & Matthaeus, W. H. Wave-driven turbulent coronal heating in open field line regions: nonlinear phenomenological model. Astrophys. J. 548, 482–491 (2001).

    ADS  Article  Google Scholar 

  78. 78.

    Cranmer, S. R., van Ballegooijen, A. A. & Edgar, R. J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520–551 (2007).

    ADS  Article  Google Scholar 

  79. 79.

    Verdini, A. & Velli, M. Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669–676 (2007).

    ADS  Article  Google Scholar 

  80. 80.

    Breech, B. et al. Turbulence transport throughout the heliosphere. J. Geophys. Res. (Space Phys.) 113, 8105 (2008).

    ADS  Article  Google Scholar 

  81. 81.

    Chandran, B. D. G. & Hollweg, J. V. Alfvén wave reflection and turbulent heating in the solar wind from 1 solar radius to 1 AU: an analytical treatment. Astrophys. J. 707, 1659–1667 (2009).

    ADS  Article  Google Scholar 

  82. 82.

    Usmanov, A. V., Matthaeus, W. H., Breech, B. A. & Goldstein, M. L. Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84 (2011).

    ADS  Article  Google Scholar 

  83. 83.

    Jin, M. et al. A global two-temperature corona and inner heliosphere model: a comprehensive validation study. Astrophys. J. 745, 6 (2012).

    ADS  Article  Google Scholar 

  84. 84.

    Sokolov, I. V. et al. Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. Astrophys. J. 764, 23 (2013).

    ADS  Article  Google Scholar 

  85. 85.

    van der Holst, B. et al. Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J. 782, 81 (2014).

    ADS  Article  Google Scholar 

  86. 86.

    Oran, R. et al. A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J. 806, 55 (2015).

    ADS  Article  Google Scholar 

  87. 87.

    Cranmer, S. R. & van Ballegooijen, A. A. On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293 (2005).

    ADS  Article  Google Scholar 

  88. 88.

    Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S. & Dmitruk, P. A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. 708, L116–L120 (2010).

    ADS  Article  Google Scholar 

  89. 89.

    de Karman, T. & Howarth, L. On the statistical theory of isotropic turbulence. R. Soc. Lond. Proc. Ser. A 164, 192–215 (1938).

    ADS  MATH  Article  Google Scholar 

  90. 90.

    Dobrowolny, M., Mangeney, A. & Veltri, P. Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144–147 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  91. 91.

    Grappin, R., Leorat, J. & Pouquet, A. Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation. Astron. Astrophys. 126, 51–58 (1983).

    ADS  Google Scholar 

  92. 92.

    Hossain, M., Gray, P. C., Pontius, D. H. Jr, Matthaeus, W. H. & Oughton, S. Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7, 2886–2904 (1995).

    ADS  MATH  Article  Google Scholar 

  93. 93.

    Matthaeus, W. H. et al. Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. Geophys. Res. Lett. 31, 12803 (2004).

    ADS  Article  Google Scholar 

  94. 94.

    Vial, J. & Engvold, O. Solar Prominences (Springer Nature, Switzerland, 2015).

  95. 95.

    Yeates, A. R. et al. Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci. Rev. (in the press); preprint at https://arxiv.org/abs/1808.00785

  96. 96.

    Mackay, D. H. & van Ballegooijen, A. A. Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577–589 (2006).

    ADS  Article  Google Scholar 

  97. 97.

    Yeates, A. R., Mackay, D. H. & van Ballegooijen, A. A. Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Sol. Phys. 247, 103–121 (2008).

    ADS  Article  Google Scholar 

  98. 98.

    Mackay, D. H. & van Ballegooijen, A. A. A non-linear force-free field model for the evolving magnetic structure of solar filaments. Sol. Phys. 260, 321–346 (2009).

    ADS  Article  Google Scholar 

  99. 99.

    Karna, N., Hess Webber, S. A. & Pesnell, W. D. Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24. Sol. Phys. 289, 3381–3390 (2014).

    ADS  Article  Google Scholar 

  100. 100.

    Titov, V. S., Hornig, G. & Démoulin, P. Theory of magnetic connectivity in the solar corona. J. Geophys. Res. (Space Phys.) 107, 1164 (2002).

    ADS  Article  Google Scholar 

  101. 101.

    Titov, V. S., Mikić, Z., Török, T., Linker, J. A. & Panasenco, O. 2010 August 1-2 sympathetic eruptions. I. Magnetic topology of the source-surface background field. Astrophys. J. 759, 70 (2012).

    ADS  Article  Google Scholar 

  102. 102.

    Titov, V. S., Mikić, Z., Török, T., Linker, J. A. & Panasenco, O. 2010 August 1-2 sympathetic eruptions. II. Magnetic topology of the MHD background field. Astrophys. J. 845, 141 (2017).

    ADS  Article  Google Scholar 

  103. 103.

    Savcheva, A. S., van Ballegooijen, A. A. & DeLuca, E. E. Field topology analysis of a long-lasting coronal sigmoid. Astrophys. J. 744, 78 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA (HSR and LWS programs), AFOSR and the National Science Foundation (NSF). Z.M. acknowledges support from NASA grants NNX16AH03G and NNX15AB65G. Computations were provided by NASA’s Advanced Supercomputing Division, NSF’s Texas Advanced Computing Center and San Diego Supercomputer Center. Data courtesy of NASA/SDO and the AIA and HMI science teams. We thank the International Space Science Institute in Bern, Switzerland, for hosting a team on ‘Global Non-Potential Magnetic Models of the Solar Corona’, led by A. Yeates, where some of the ideas were developed. We thank the Solar Physics Group at Stanford University for their support in providing timely access to HMI data. Data courtesy of the Mauna Loa Solar Observatory, operated by the High Altitude Observatory (HAO), as part of the National Center for Atmospheric Research (NCAR). NCAR is supported by the NSF. D.H.M. thanks both the UK STFC and the Leverhulme Trust for their financial support. L.A.U. was supported by the NSF Atmospheric and Geospace Sciences Postdoctoral Research Fellowship Program (Award AGS-1624438) and is hosted by HAO at NCAR. The Williams College Eclipse Expedition was supported in large part by grants from the Solar Terrestrial Program of the Division of Atmospheric and Geospace Sciences of the NSF (Award AGS-1602461) and from the Committee for Research and Exploration of the National Geographic Society (Grant 9878-16), with additional support from the NASA Massachusetts Space Grant Consortium, the Sigma Xi scientific research honor society and the Clare Booth Luce Foundation.

Author information

Affiliations

Authors

Contributions

Z.M. and C.D. wrote the text, developed and ran the MHD model, and analysed the output. R.M.C. developed and ran the MHD model. D.H.M. ran the magnetofrictional model. L.A.U. analysed data and provided model inputs. J.A.L., P.R., R.L., T.T. and V.S.T. contributed to the development of the MHD model. J.W., P.R. and Z.M. developed the website. M.D. photographed the eclipse and produced an eclipse image. J.M.P. organized the 2017 eclipse expedition and its imaging, supervised the composition of an eclipse image, and contributed to the text. W.C. composed an eclipse image. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zoran Mikić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikić, Z., Downs, C., Linker, J.A. et al. Predicting the corona for the 21 August 2017 total solar eclipse. Nat Astron 2, 913–921 (2018). https://doi.org/10.1038/s41550-018-0562-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing