The formation of Jupiter by hybrid pebble–planetesimal accretion

Abstract

The standard model for giant planet formation is based on the accretion of solids by a growing planetary embryo, followed by rapid gas accretion once the planet exceeds a so-called critical mass1. However, the dominant size of the accreted solids (‘pebbles’ of the order of centimetres or ‘planetesimals’ of the order of kilometres to hundreds of kilometres) is unknown1,2. Recently, high-precision measurements of isotopes in meteorites have provided evidence for the existence of two reservoirs of small bodies in the early Solar System3. These reservoirs remained separated from ~1 Myr until ~3 Myr after the Solar System started to form. This separation is interpreted as resulting from Jupiter growing and becoming a barrier for material transport. In this framework, Jupiter reached ~20 Earth masses (M) within ~1 Myr and slowly grew to ~50 M in the subsequent 2 Myr before reaching its present-day mass3. The evidence that Jupiter’s growth slowed after reaching 20 M for at least 2 Myr is puzzling because a planet of this mass is expected to trigger fast runaway gas accretion4,5. Here, we use theoretical models to describe the conditions allowing for such a slow accretion and show that Jupiter grew in three distinct phases. First, rapid pebble accretion supplied the major part of Jupiter’s core mass. Second, slow planetesimal accretion provided the energy required to hinder runaway gas accretion during the 2 Myr. Third, runaway gas accretion proceeded. Both pebbles and planetesimals therefore play an important role in Jupiter’s formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time to reach 50 M as a function of the core mass at 1 Myr and the solid accretion rate (M yr−1, log scale).
Fig. 2: Accretion rate of planetesimals as a function of the solid mass fraction and the core mass at 1 Myr.
Fig. 3: The three stages of the hybrid pebble–planetesimal formation model.

References

  1. 1.

    Helled, R. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 643–666 (Univ. Arizona Press, Tucson, AZ, 2014).

  2. 2.

    Johansen, A. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 547–570 (Univ. Arizona Press, Tucson, AZ, 2014).

  3. 3.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    ADS  Google Scholar 

  4. 4.

    Pollack et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Article  Google Scholar 

  5. 5.

    Alibert, Y., Mordasini, C., Benz, W. & Winisdoerffer, C. Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Trinquier, A., Birck, J. L. & Allègre, C. J. Widespread 54Cr heterogeneity in the inner Solar System. Astrophys. J. 655, 1179–1185 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Leya, I. et al. Titanium isotopes and the radial heterogeneity of the Solar System. Earth Planet. Sci. Lett. 266, 233–244 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Dauphas, N. & Schauble, E. A. Mass fractionation laws, mass-independent effects, and isotopic anomalies. Ann. Rev. Earth Planet. Sci. 44, 709–783 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Alibert, Y. et al. Theoretical models of planetary system formation: mass vs. semi-major axis. Astron. Astrophys. 558, A109 (2013).

    Article  Google Scholar 

  10. 10.

    Fortier, A., Alibert, Y., Carron, F., Benz, W. & Dittkrist, K.-M. Planet formation models: the interplay with the planetesimal disc. Astron. Astrophys. 549, A44 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Levison, H., Thommes, E. & Duncan, M. J. Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139, 1297–1314 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    Simon, J. B., Armitage, P. J., Youdin, A. N. & Li, R. Evidence for universality in the initial planetesimal mass function. Astrophys. J. Lett. 847, L12 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Kobayashi, H., Tanaka, H., Krivov, A. V. & Inaba, S. Planetary growth with collisional fragmentation and gas drag. Icarus 209, 836–847 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Bitsch, B., Lambrechts, M. & Johansen, A. The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, A112 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Bitsch, B., Lambrechts, M. & Johansen, A. The growth of planets by pebble accretion in evolving protoplanetary discs (corrigendum). Astron. Astrophys. 609, C2 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Ida, S. & Guillot, T. Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. Astron. Astrophys. 596, L3 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998).

    ADS  Article  Google Scholar 

  19. 19.

    Zhou, J.-L. & Lin, D. N. C. Planetesimal accretion onto growing proto-gas giant planets. Astrophys. J. 666, 447–465 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Mordasini, C., Alibert, Y. & Benz, W. Destruction of planetesimals in protoplanetary atmospheres. In Proc. Tenth Anniversary of 51 Peg-b: Status of and Prospects for Hot Jupiter Studies (eds Arnold, L. et al.) 84–86 (Frontier Group, 2006).

  22. 22.

    Lozovsky, M., Helled, R., Rosenberg, E. D. & Bodenheimer, P. Jupiter’s formation and its primordial internal structure. Astrophys. J. 836, 227 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Venturini, J. & Helled, R. The formation of mini-Neptunes. Astrophys. J. 848, 95 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Venturini, J., Alibert, Y. & Benz, W. Planet formation with envelope enrichment: new insights on planetary diversity. Astron. Astrophys. 596, A90 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Thiabaud, A. et al. From stellar nebula to planets: the refractory components. Astron. Astrophys. 562, A27 (2014).

    Article  Google Scholar 

  27. 27.

    Lissauer, J. J., Hubickyj, O., D’Angelo, G. & Bodenheimer, P. Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199, 338–350 (2009).

    ADS  Article  Google Scholar 

  28. 28.

    Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. S. 99, 713–741 (1995).

    ADS  Article  Google Scholar 

  29. 29.

    Thompson, S. L. ANEOS—Analytic Equations of State for Shock Physics Codes—Input Manual Report SAND89-2951 (Sandia National Laboratories, 1990).

  30. 30.

    Ormel, C. W. An atmospheric structure equation for grain growth. Astrophys. J. Lett. 789, L18 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Mordasini, C. Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for grain opacity in protoplanetary atmospheres. Astron. Astrophys. 572, A118 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Ormel, C. W., Shi, J.-M. & Kuiper, R. Hydrodynamics of embedded planets’ first atmospheres. II. A rapid recycling of atmospheric gas. Mon. Not. R. Astron. Soc. 447, 3512–3525 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Alibert, Y. The maximum mass of planetary embryos formed in core-accretion models. Astron. Astrophys. 606, 69–78 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Bitsch, B., Johansen, A., Lambrechts, M. & Morbidelli, A. The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Ida, S. & Makino, J. Scattering of planetesimals by a protoplanet—slowing down of runaway growth. Icarus 106, 210–227 (1993).

    ADS  Article  Google Scholar 

  36. 36.

    Nakazawa, K., Ida, S. & Nakagawa, Y. Collisional probability of planetesimals revolving in the solar gravitational field. I. Basic formulation. Astron. Astrophys. 220, 293–300 (1989).

    ADS  MathSciNet  MATH  Google Scholar 

  37. 37.

    Inaba, S. et al. High-accuracy statistical simulation of planetary accretion. II. Comparison with N-body simulation. Icarus 149, 235–250 (2001).

    ADS  Article  Google Scholar 

  38. 38.

    Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS  Article  Google Scholar 

  39. 39.

    Bell, K. R. & Lin, D. N. C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. Astrophys. J. 427, 987–1004 (1994).

    ADS  Article  Google Scholar 

  40. 40.

    Weidenschilling, S. J. The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977).

    ADS  Article  Google Scholar 

  41. 41.

    Drążkowska, J., Alibert, Y. & Moore, B. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been developed in the framework of the National Center for Competence in Research PlanetS funded by the Swiss National Science Foundation (SNSF). Y.A., W.B. and R.B. acknowledge support from the SNSF under grant 200020_172746. C.M. acknowledges support from the SNSF under grant BSSGI0_155816 ‘PlanetsInTime’. R.H. acknowledges support from SNSF project 200021_169054. Y.A. acknowledges the support of the European Research Council under grant 239605 ‘PLANETOGENESIS’. M.S. acknowledges the support of the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. [279779]. We thank C. Surville for sharing the results of hydrodynamic simulations of disk–planet interaction before publication.

Author information

Affiliations

Authors

Contributions

Y.A. initiated the project. Y.A., J.V., S.A., R.B. and L.S. performed the theoretical calculations. Y.A., J.V. and R.H. led the writing of the manuscript, and all authors contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Yann Alibert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1-7, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alibert, Y., Venturini, J., Helled, R. et al. The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat Astron 2, 873–877 (2018). https://doi.org/10.1038/s41550-018-0557-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing