Abstract

Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares1, solar flares2 and stunning aurorae3. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection4. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn’s dayside magnetosphere5. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres6. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn’s magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of ~2.6 mW m2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations7.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Clausen-Brown, E. & Lyutikov, M. Crab nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426, 1374–1384 (2012).

  2. 2.

    Parker, E. N. The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. Suppl. Ser. 8, 177 (1963).

  3. 3.

    Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961).

  4. 4.

    Paschmann, G. et al. Plasma acceleration at the Earth’s magnetopause: evidence for reconnection. Nature 282, 243–246 (1979).

  5. 5.

    Delamere, P., Otto, A., Ma, X., Bagenal, F. & Wilson, R. Magnetic flux circulation in the rotationally driven giant magnetospheres. J. Geophys. Res. Space Phys. 120, 4229–4245 (2015).

  6. 6.

    Roussos, E. et al. Quasi-periodic injections of relativistic electrons in Saturn’s outer magnetosphere. Icarus 263, 101–116 (2016).

  7. 7.

    Mitchell, D. et al. Recurrent pulsations in Saturn’s high latitude magnetosphere. Icarus 263, 94–100 (2016).

  8. 8.

    Vasyliunas, V. Plasma distribution and flow. Phys. Jovian Magnetos. 1, 395–453 (1983).

  9. 9.

    Burkholder, B. et al. Local time asymmetry of Saturn’s magnetosheath flows.Geophys. Res. Lett. 44, 5877–5883 2017).

  10. 10.

    Yao, Z. et al. Corotating magnetic reconnection site in Saturn’s magnetosphere.Astrophys. J. Lett. 846, L25 (2017).

  11. 11.

    Angelopoulos, V. et al. Tail reconnection triggering substorm onset. Science 321, 931–935 (2008).

  12. 12.

    Arridge, C. S. et al. Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail.Nat. Phys. 12, 268–271 2016).

  13. 13.

    Kronberg, E., Kasahara, S., Krupp, N. & Woch, J. Field-aligned beams and reconnection in the jovian magnetotail. Icarus 217, 55–65 (2012).

  14. 14.

    Dougherty, M. K. et al. The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004).

  15. 15.

    Young, D. et al. Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004).

  16. 16.

    Nagai, T. et al. Geotail observations of the Hall current system: evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. Space Phys. 106, 25929–25949 (2001).

  17. 17.

    Krimigis, S. M. et al. Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space. Sci. Rev. 114, 233–329 (2004).

  18. 18.

    Lindstedt, T. et al. Separatrix regions of magnetic reconnection at the magnetopause.Ann. Geophys. 27, 4039–4056 (2009).

  19. 19.

    Mauk, B. et al. Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003 (2002).

  20. 20.

    Wang, S. et al. Electron heating in the exhaust of magnetic reconnection with negligible guide field. J. Geophys. Res. Space Phys. 121, 2104–2130 (2016).

  21. 21.

    Birn, J. et al. Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys. 106, 3715–3719 (2001).

  22. 22.

    Palmaerts, B. et al. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn’s outer magnetosphere. Icarus 271, 1–18 (2016).

  23. 23.

    Radioti, A. et al. Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett. 40, 4498–4502 (2013).

  24. 24.

    Gérard, J. C. et al. Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36, L02202 (2009).

  25. 25.

    Grodent, D., Gérard, J. C., Clarke, J., Gladstone, G. & Waite, J.A possible auroral signature of a magnetotail reconnection process on Jupiter.J. Geophys. Res. Space Phys. 109, A05201 (2004).

  26. 26.

    Badman, S. V. et al. Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013).

  27. 27.

    Gladstone, G. et al. A pulsating auroral X-ray hot spot on Jupiter. Nature 415, 1000–1003 (2002).

  28. 28.

    Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., Retino, A. & Andre, M. Energetic electron acceleration by unsteady magnetic reconnection. Nat. Phys. 9, 426–430 (2013).

  29. 29.

    Kanani, S. J. et al. A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. Space Phys. 115, A06207 (2010).

  30. 30.

    Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T.Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements.J. Geophys. Res. 110, A11208 (2005).

  31. 31.

    Arridge, C. et al. Saturn’s magnetodisc current sheet. J. Geophys. Res. Space Phys. 113, A04214(2008).

  32. 32.

    Arridge, C. S. et al. Periodic motion of Saturn’s nightside plasma sheet.J. Geophys. Res. Space Phys. 116, A11205 (2011).

  33. 33.

    Sergeev, V. et al. Current sheet flapping motion and structure observed by Cluster. Geophys. Res. Lett. 30, 1327–1324 (2003).

  34. 34.

    Runov, A. et al. Electric current and magnetic field geometry in flapping magnetotail current sheets.Ann. Geophys. 23, 1391–1403 (2005).

  35. 35.

    Delamere, P. A., Wilson, R. J. & Masters, A.Kelvin–Helmholtz instability at Saturn’s magnetopause: hybrid simulations.J. Geophys. Res. Space Phys. 116, A10222 (2011).

  36. 36.

    Masters, A. et al. Cassini observations of a Kelvin–Helmholtz vortex in Saturn’s outer magnetosphere.J. Geophys. Res. Space Phys. 115, A07225 (2010).

  37. 37.

    Sweet, P. A. The production of high energy particles in solar flares. Nuovo Cimento 8, 188–196 (1958).

  38. 38.

    Parker, E. N. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957).

  39. 39.

    Thomsen, M. F. et al. Survey of ion plasma parameters in Saturn’s magnetosphere.J. Geophys. Res. Space Phys. 115, A10220 (2010).

  40. 40.

    Korovinskiy, D. B., Semenov, V. S., Erkaev, N. V., Divin, A. V. & Biernat, H. K. The 2.5-D analytical model of steady-state Hall magnetic reconnection. J. Geophys. Res. Space Phys. 113, A04205 (2008).

  41. 41.

    Nichols, J. D. et al. Saturn’s equinoctial auroras.Geophys. Res. Lett. 36, L24102 (2009).

  42. 42.

    Yao, Z. H. et al. Mechanisms of Saturn’s near-noon transient aurora: in situ evidence from Cassini measurements.Geophys. Res. Lett. 44, 217–228 (2017).

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (41525016, 41474155, 41704169, 41274167 and 41621063). Z.H.Y. is a Marie Curie COFUND research fellow, cofunded by the EU. Cassini operations are supported by NASA (managed by the Jet Propulsion Laboratory) and European Space Agency (ESA). R.L.G. is supported by the opening fund of the Lunar and Planetary Science Laboratory (a partner laboratory of the Key Laboratory of Lunar and Deep Space Exploration) (Macau FDCT grant 039/2013/A2). I.J.R. is supported in part by Science and Technology Facilities Council (STFC) grant ST/N000722/1. Z.H.Y., B.P. and D.G. are supported by the PRODEX programme managed by ESA in collaboration with the Belgian Federal Science Policy Office. W.R.D. is supported by an STFC research grant to University College London, an SAO fellowship to the Harvard–Smithsonian Centre for Astrophysics and ESA contract 4000120752/17/NL/MH. A.J.C. is supported by STFC Consolidated Grants to UCL-MSSL (ST/K000977/1 and ST/N000722/1).

Author information

Affiliations

  1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

    • R. L. Guo
    •  & Y. Wei
  2. Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Liège, Belgium

    • R. L. Guo
    • , Z. H. Yao
    • , D. Grodent
    •  & B. Palmaerts
  3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

    • Y. Wei
  4. Department of Physics, Lancaster University, Lancaster, UK

    • L. C. Ray
    •  & C. S. Arridge
  5. Mullard Space Science Laboratory, University College London, Dorking, UK

    • I. J. Rae
    • , A. J. Coates
    •  & W. R. Dunn
  6. University of Alaska Fairbanks, Geophysical Institute, Fairbanks, AK, USA

    • P. A. Delamere
  7. Office for Space Research and Technology, Academy of Athens, Athens, Greece

    • N. Sergis
  8. Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece

    • N. Sergis
  9. Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA

    • P. Kollmann
  10. Southwest Research Institute, San Antonio, TX, USA

    • J. H. Waite
    •  & J. L. Burch
  11. School of Earth and Space Sciences, Peking University, Beijing, China

    • Z. Y. Pu
  12. Department of Physics, Faculty of Natural Sciences, Imperial College, London, UK

    • M. K. Dougherty

Authors

  1. Search for R. L. Guo in:

  2. Search for Z. H. Yao in:

  3. Search for Y. Wei in:

  4. Search for L. C. Ray in:

  5. Search for I. J. Rae in:

  6. Search for C. S. Arridge in:

  7. Search for A. J. Coates in:

  8. Search for P. A. Delamere in:

  9. Search for N. Sergis in:

  10. Search for P. Kollmann in:

  11. Search for D. Grodent in:

  12. Search for W. R. Dunn in:

  13. Search for J. H. Waite in:

  14. Search for J. L. Burch in:

  15. Search for Z. Y. Pu in:

  16. Search for B. Palmaerts in:

  17. Search for M. K. Dougherty in:

Contributions

All authors were involved in writing the paper. R.L.G., Z.H.Y. and Y.W. led the work and conducted most of the analysis for the Cassini measurements. L.C.R. provided knowledge of planetary magnetospheric dynamics and critical review of the techniques applied, along with extensive paper writing and data analysis. I.J.R., C.S.A., P.A.D., Z.Y.P. and J.L.B. provided expertise on auroral drivers and magnetospheric processes. N.S. and P.K. provided crucial support in using ion data, as well as insight on magnetospheric dynamics. A.J.C., D.G., W.R.D., J.H.W., B.P. and M.K.D. provided detailed knowledge of planetary magnetospheres.

Corresponding author

Correspondence to Z. H. Yao.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0461-9