Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The current ability to test theories of gravity with black hole shadows

Abstract

Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein’s theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GRMHD simulations of a magnetized torus accreting onto a Kerr black hole and a non-rotating dilaton black hole.
Fig. 2: Simulated black hole shadow images of Sgr A* from GRMHD simulations of an accretion flow onto a black hole.
Fig. 3: Synthetic shadow images of Sgr A* for a Kerr black hole and a non-rotating dilaton black hole.

References

  1. 1.

    Eckart, A. & Genzel, R. Observations of stellar proper motions near the Galactic Centre. Nature 383, 415–417 (1996).

    ADS  Article  Google Scholar 

  2. 2.

    Genzel, R., Eisenhauer, F. & Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Doeleman, S. S. et al. Event-horizon–scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 455, 78–80 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Goddi, C. et al. BlackHoleCam: fundamental physics of the Galactic Center. Int. J. Mod. Phys. D 26, 1730001–1730239 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Broderick, A. E., Johannsen, T., Loeb, A. & Psaltis, D. Testing the no-hair theorem with Event Horizon Telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Johannsen, T. Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. Class. Quant. Grav. 33, 124001 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Cunningham, C. T. & Bardeen, J. M. The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 183, 237–264 (1973).

    ADS  Article  Google Scholar 

  8. 8.

    Luminet, J.-P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228–235 (1979).

    ADS  Google Scholar 

  9. 9.

    Falcke, H., Melia, F. & Agol, E. Viewing the shadow of the black hole at the Galactic Center. Astrophys. J. Lett. 528, L13–L16 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    Dexter, J., Agol, E. & Fragile, P. C. Millimeter flares and VLBI visibilities from relativistic simulations of magnetized accretion onto the Galactic Center black hole. Astrophys. J. Lett. 703, L142–L146 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Mościbrodzka, M., Falcke, H., Shiokawa, H. & Gammie, C. F. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: application to Sagittarius A*. Astron. Astrophys. 570, A7 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Chan, C.-K., Psaltis, D., Özel, F., Narayan, R. & Sadowski, A. The power of imaging: constraining the plasma properties of GRMHD simulations using EHT observations of Sgr A*. Astrophys. J. 799, 1 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Gold, R., McKinney, J. C., Johnson, M. D. & Doeleman, S. S. Probing the magnetic field structure in Sgr A* on black hole horizon scales with polarized radiative transfer simulations. Astrophys. J. 837, 180 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Porth, O. et al. The black hole accretion code. Comput. Astrophys. Cosmol. 4, 1 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Rezzolla, L. & Zhidenko, A. New parametrization for spherically symmetric black holes in metric theories of gravity. Phys. Rev. D 90, 084009 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Broderick, A. E., Fish, V. L., Doeleman, S. S. & Loeb, A. Evidence for low black hole spin and physically motivated accretion models from millimeter-VLBI observations of Sagittarius A*. Astrophys. J. 735, 110 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Broderick, A. E. et al. Modeling seven years of Event Horizon Telescope observations with radiatively inefficient accretion flow models. Astrophys. J. 820, 137 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Garca, A., Galtsov, D. & Kechkin, O. Class of stationary axisymmetric solutions of the Einstein–Maxwell-dilaton–axion field equations. Phys. Rev. Lett. 74, 1276–1279 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Damour, T. & Polyakov, A. M. The string dilation and a least coupling principle. Nucl. Phys. B 423, 532–558 (1994).

    ADS  Article  Google Scholar 

  20. 20.

    Gammie, C. F., McKinney, J. C. & Tóth, G. Harm: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J. 589, 458 (2003).

    ADS  Article  Google Scholar 

  21. 21.

    Mościbrodzka, M. & Falcke, H. Coupled jet-disk model for Sagittarius A*: explaining the flat-spectrum radio core with GRMHD simulations of jets. Astron. Astrophys. 559, L3 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Younsi, Z., Zhidenko, A., Rezzolla, L., Konoplya, R. & Mizuno, Y. New method for shadow calculations: application to parametrized axisymmetric black holes. Phys. Rev. D. 94, 084025 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Buscher, D. F. Direct maximum-entropy image reconstruction from the bispectrum. IAU Symp. P. Ser. 158, 91 (1994).

    ADS  Google Scholar 

  24. 24.

    Chael, A. A. et al. High-resolution linear polarimetric imaging for the Event Horizon Telescope. Astrophys. J. 829, 11 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Lu, R.-S. et al. Imaging an event horizon: mitigation of source variability of Sagittarius A*. Astrophys. J. 817, 173 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Dexter, J. & O’Leary, R. M. The peculiar pulsar population of the central parsec. Astrophys. J. Lett. 783, L7 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Psaltis, D., Wex, N. & Kramer, M. A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the Event Horizon Telescope. Astrophys. J. 818, 121 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Meliani, Z. et al. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astron. Astrophys. 598, A38 (2017).

    Article  Google Scholar 

  29. 29.

    Font, J. A. & Daigne, F. On the stability of thick accretion disks around black holes. Astrophys. J. 581, L23–L26 (2002).

    ADS  Article  Google Scholar 

  30. 30.

    Rezzolla, L. & Zanotti, O. Relativistic Hydrodynamics (Oxford Univ. Press, Oxford, 2013).

    Book  Google Scholar 

  31. 31.

    Konoplya, R., Rezzolla, L. & Zhidenko, A. General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 93, 064015 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Johannsen, T. & Psaltis, D. Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 83, 124015 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    De Laurentis, M., Younsi, Z., Porth, O., Mizuno, Y. & Rezzolla, L. Test-particle dynamics in general spherically symmetric black hole spacetimes. Preprint at https://arxiv.org/abs/1712.00265 (2017).

  34. 34.

    Shiokawa, H., Dolence, J. C., Gammie, C. F. & Noble, S. C. Global general relativistic magnetohydrodynamic simulations of black hole accretion flows: a convergence study. Astrophys. J. 744, 187 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Younsi, Z., Wu, K. & Fuerst, S. V. General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron. Astrophys. 545, A13 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Boehle, A. et al. An improved distance and mass estimate for Sgr A* from a multistar orbit analysis. Astrophys. J. 830, 17 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H. & Leung, P. K. Radiative models of Sgr A* from GRMHD simulations. Astrophys. J. 706, 497–507 (2009).

    ADS  Article  Google Scholar 

  38. 38.

    Psaltis, D. et al. Event Horizon Telescope evidence for alignment of the black hole in the center of the Milky Way with the inner stellar disk. Astrophys. J. 798, 15 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Marrone, D. P., Moran, J. M., Zhao, J.-H. & Rao, R. Interferometric measurements of variable 340 GHz linear polarization in Sagittarius A*. Astrophys. J. 640, 308–318 (2006).

    ADS  Article  Google Scholar 

  40. 40.

    Doeleman, S. S., Fish, V. L., Broderick, A. E., Loeb, A. & Rogers, A. E. E. Detecting flaring structures in Sagittarius A* with high-frequency VLBI. Astrophys. J. 695, 59–74 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Lu, R.-S. et al. Imaging the supermassive black hole shadow and jet base of M87 with the Event Horizon Telescope. Astrophys. J. 788, 120 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Högbom, J. A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Supp. 15, 417 (1974).

    ADS  Google Scholar 

  43. 43.

    Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Moscibrodzka, T. Bronzwaer and J. Davelaar for fruitful discussions. This research is supported by the ERC synergy grant ‘BlackHoleCam: Imaging the Event Horizon of Black Holes’ (grant number 610058). Z.Y. acknowledges support from an Alexander von Humboldt Fellowship. H.O. is supported in part by a CONACYT-DAAD scholarship. The simulations were performed on LOEWE at the CSC-Frankfurt and Iboga at ITP Frankfurt.

Author information

Affiliations

Authors

Contributions

Y.M. performed the GRMHD simulations and wrote the manuscript. Z.Y. performed the GRRT calculations and authored the GRRT code BHOSS. C.M.F. calculated the synthetic black hole shadow images. Z.Y. and C.M.F. helped write the manuscript. O.P. authored the GRMHD code BHAC. M.D.L. provided information on alternative theories of gravity. H.O. helped to perform the GRMHD simulations. H.F. and M.K. provided insight into the scientific interpretation of the results. L.R. initiated and closely supervised the project, and wrote the manuscript. All authors discussed the results and commented on all versions of the manuscript.

Corresponding author

Correspondence to Yosuke Mizuno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary Figures 1–9, Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizuno, Y., Younsi, Z., Fromm, C.M. et al. The current ability to test theories of gravity with black hole shadows. Nat Astron 2, 585–590 (2018). https://doi.org/10.1038/s41550-018-0449-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing