Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of 3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars’ light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images’ long-term brightness ratio.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Miralda-Escude, J. The magnification of stars crossing a caustic. I—Lenses with smooth potentials. Astrophys. J. 379, 94–98 (1991).

  2. 2.

    Kelly, P. L. et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science 347, 1123–1126 (2015).

  3. 3.

    Rodney, S. A. et al. SN Refsdal: photometry and time delay measurements of the first Einstein cross supernova. Astrophys. J. 820, 50 (2016).

  4. 4.

    Kelly, P. L. et al. Deja vu all over again: the reappearance of supernova Refsdal. Astrophys. J. Lett. 819, L8 (2016).

  5. 5.

    Oguri, M. Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. Mon. Not. R. Astron. Soc. 449, L86–L89 (2015).

  6. 6.

    Sharon, K. & Johnson, T. L. Revised lens model for the multiply imaged lensed supernova, SN Refsdal in MACS J1149+2223. Astrophys. J. Lett. 800, L26 (2015).

  7. 7.

    Diego, J. M. et al. A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223. Mon. Not. R. Astron. Soc. 456, 356–365 (2016).

  8. 8.

    Jauzac, M. et al. Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs. Mon. Not. R. Astron. Soc. 457, 2029–2042 (2016).

  9. 9.

    Grillo, C. et al. The story of supernova ‘Refsdal’ told by MUSE. Astrophys. J. 822, 78 (2016).

  10. 10.

    Kawamata, R., Oguri, M., Ishigaki, M., Shimasaku, K. & Ouchi, M. Precise strong lensing mass modeling of four Hubble Frontier Field clusters and a sample of magnified high-redshift galaxies. Astrophys. J. 819, 114 (2016).

  11. 11.

    Treu, T. et al. ‘Refsdal’ meets Popper: comparing predictions of the re-appearance of the multiply imaged supernova behind MACSJ1149.5+2223. Astrophys. J. 817, 60 (2016).

  12. 12.

    Ebeling, H. et al. A complete sample of 12 very X-ray luminous galaxy clusters at z > 0.5. Astrophys. J. Lett. 661, L33–L36 (2007).

  13. 13.

    Smith, G. P. et al. Hubble Space Telescope observations of a spectacular new strong-lensing galaxy cluster: MACS J1149.5+2223 at z=0.544. Astrophys. J. Lett. 707, L163–L168 (2009).

  14. 14.

    Zitrin, A. & Broadhurst, T. Discovery of the largest known lensed images formed by a critically convergent lensing cluster. Astrophys. J. Lett. 703, L132–L136 (2009).

  15. 15.

    Yuan, T.-T., Kewley, L. J., Swinbank, A. M., Richard, J. & Livermore, R. C. Metallicity gradient of a lensed face-on spiral galaxy at redshift 1.49. Astrophys. J. Lett. 732, L14 (2011).

  16. 16.

    Karman, W. et al. Highly ionized region surrounding SN Refsdal revealed by MUSE. Astron. Astrophys. 585, A27 (2016).

  17. 17.

    Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Preprint at https://arxiv.org/abs/astro-ph/0405087 (2004).

  18. 18.

    Diego, J. M. et al. Dark matter under the microscope: constraining compact dark matter with caustic crossing events. Preprint at https://arxiv.org/abs/1706.10281 (2017).

  19. 19.

    Dachs, J. Photometry of bright stars in the Small Magellanic Cloud. Astron. Astrophys. 9, 95–109 (1970).

  20. 20.

    Bresolin, F. et al. A Hubble Space Telescope study of extragalactic OB associations. Astron. J. 116, 119–130 (1998).

  21. 21.

    Xu, B. et al. The detection and statistics of giant arcs behind CLASH clusters. Astrophys. J. 817, 85 (2016).

  22. 22.

    Duchêne, G. & Kraus, A. Stellar multiplicity. Ann. Rev. Astron. Astr. 51, 269–310 (2013).

  23. 23.

    Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

  24. 24.

    Fryer, C. L. et al. Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys. J. 749, 91 (2012).

  25. 25.

    Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).

  26. 26.

    Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016).

  27. 27.

    Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

  28. 28.

    Jones, D. O., Scolnic, D. M. & Rodney, S. A. PythonPhot: simple DAOPHOT-type photometry in Python ascl:1501.010 (Astrophysics Source Code Library, 2015).

  29. 29.

    Rodney, S. A. et al. Illuminating a dark lens: a type Ia supernova magnified by the Frontier Fields galaxy cluster Abell 2744. Astrophys. J. 811, 70 (2015).

  30. 30.

    Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

  31. 31.

    Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

  32. 32.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

  33. 33.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

  34. 34.

    Marigo, P. & Girardi, L. Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration. Astron. Astrophys. 469, 239–263 (2007).

  35. 35.

    Marigo, P. et al. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astron. Astrophys. 482, 883–905 (2008).

  36. 36.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astr. 47, 481–522 (2009).

  37. 37.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

  38. 38.

    Dolphin, A. E. WFPC2 stellar photometry with HSTPHOT. Publ. Astron. Soc. Pac. 112, 1383–1396 (2000).

  39. 39.

    Watson, W. A. et al. The halo mass function through the cosmic ages. Mon. Not. R. Astron. Soc. 433, 1230–1245 (2013).

  40. 40.

    Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

  41. 41.

    Zitrin, A. et al. New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. Mon. Not. R. Astron. Soc. 396, 1985–2002 (2009).

  42. 42.

    Oguri, M. The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn 62, 1017–1024 (2010).

  43. 43.

    Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New. J. Phys. 9, 447 (2007).

  44. 44.

    Suyu, S. H. & Halkola, A. The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544-0121. Astron. Astrophys. 524, A94 (2010).

  45. 45.

    Suyu, S. H. et al. Disentangling baryons and dark matter in the spiral gravitational lens B1933+503. Astrophys. J. 750, 10 (2012).

  46. 46.

    Schmidt, K. B. et al. Through the looking GLASS: HST spectroscopy of faint galaxies lensed by the Frontier Fields cluster MACSJ0717.5+3745. Astrophys. J. Lett. 782, L36 (2014).

  47. 47.

    Treu, T. et al. The Grism Lens-Amplified Survey from Space (GLASS). I. Survey overview and first data release. Astrophys. J. 812, 114 (2015).

  48. 48.

    Kelly, P. L. et al. SN Refsdal: classification as a luminous and blue SN 1987A-like type II supernova. Astrophys. J. 831, 205 (2016).

  49. 49.

    Chabrier, G. The galactic disk mass function: reconciliation of the Hubble Space Telescope and nearby determinations. Astrophys. J. Lett. 586, L133–L136 (2003).

  50. 50.

    Gaudi, B. S. & Petters, A. O. Gravitational microlensing near caustics. I. Folds. Astrophys. J. 574, 970–984 (2002).

  51. 51.

    Treu, T. et al. The initial mass function of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010).

  52. 52.

    Auger, M. W. et al. Dark matter contraction and the stellar content of massive early-type galaxies: disfavoring ‘light’ initial mass functions. Astrophys. J. Lett. 721, L163–L167 (2010).

  53. 53.

    Spiniello, C., Koopmans, L. V. E., Trager, S. C., Czoske, O. & Treu, T. The X-Shooter Lens Survey—I. dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy. Mon. Not. R. Astron. Soc. 417, 3000–3009 (2011).

  54. 54.

    Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012).

  55. 55.

    van Dokkum, P. G. & Conroy, C. A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010).

  56. 56.

    Conroy, C. & van Dokkum, P. G. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophys. J. 760, 71 (2012).

  57. 57.

    Newman, A. B., Smith, R. J., Conroy, C., Villaume, A. & van Dokkum, P. The initial mass function in the nearest strong lenses from SNELLS: assessing the consistency of lensing, dynamical, and spectroscopic constraints. Astrophys. J. 845, 157 (2017).

  58. 58.

    Barnabè, M. et al. A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies. Mon. Not. R. Astron. Soc. 436, 253–258 (2013).

  59. 59.

    Conroy, C., van Dokkum, P. G. & Villaume, A. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. IV. A super-Salpeter IMF in the center of NGC 1407 from non-parametric models. Astrophys. J. 837, 166 (2017).

  60. 60.

    Alves de Oliveira, C. et al. Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses. Astron. Astrophys. 549, A123 (2013).

  61. 61.

    Moraux, E., Bouvier, J., Stauffer, J. R. & Cuillandre, J.-C. Brown dwarfs in the Pleiades cluster: clues to the substellar mass function. Astron. Astrophys. 400, 891–902 (2003).

  62. 62.

    Renzini, A. & Ciotti, L. Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies. Astrophys. J. Lett. 416, L49 (1993).

  63. 63.

    Edwards, L. O. V., Alpert, H. S., Trierweiler, I. L., Abraham, T. & Beizer, V. G. Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108. Mon. Not. R. Astron. Soc. 461, 230–239 (2016).

  64. 64.

    Smartt, S. J., Eldridge, J. J., Crockett, R. M. & Maund, J. R. The death of massive stars—I. observational constraints on the progenitors of type II-P supernovae. Mon. Not. R. Astron. Soc. 395, 1409–1437 (2009).

  65. 65.

    Gerke, J. R., Kochanek, C. S. & Stanek, K. Z. The search for failed supernovae with the Large Binocular Telescope: first candidates. Mon. Not. R. Astron. Soc. 450, 3289–3305 (2015).

  66. 66.

    Pejcha, O. & Thompson, T. A. The landscape of the neutrino mechanism of core-collapse supernovae: neutron star and black hole mass functions, explosion energies, and nickel yields. Astrophys. J. 801, 90 (2015).

  67. 67.

    Hamann, W.-R., Schoenberner, D. & Heber, U. Mass loss from extreme helium stars. Astron. Astrophys. 116, 273–285 (1982).

  68. 68.

    Hamann, W.-R. & Koesterke, L. Spectrum formation in clumped stellar winds: consequences for the analyses of Wolf-Rayet spectra. Astron. Astrophys. 335, 1003–1008 (1998).

  69. 69.

    Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Ann. Rev. Astron. Astr. 52, 487–528 (2014).

  70. 70.

    Belczynski, K. et al. Compact object modeling with the StarTrack population synthesis code. Astrophys. J. Suppl. S. 174, 223–260 (2008).

  71. 71.

    Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010).

  72. 72.

    Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444 (2012).

  73. 73.

    Sharon, K. et al. The type Ia supernova rate in redshift 0.5–0.9 galaxy clusters. Astrophys. J. 718, 876–893 (2010).

  74. 74.

    Postman, M. et al. The Cluster Lensing and Supernova survey with Hubble: an overview. Astrophys. J. Suppl. S. 199, 25 (2012).

  75. 75.

    Graur, O. et al. Type-Ia supernova rates to redshift 2.4 from CLASH: The Cluster Lensing and Supernova survey with Hubble. Astrophys. J. 783, 28 (2014).

  76. 76.

    Keeton, C. R. On modeling galaxy-scale strong lens systems. Gen. Rel. Grav. 42, 2151–2176 (2010).

Download references


We thank the directors of the Space Telescope Science Institute, the Gemini Observatory, the GTC and the European Southern Observatory for granting us discretionary time. We thank B. Katz, D. Kushnir, B. Periello, I. Momcheva, T. Royale, L. Strolger, D. Coe, J. Lotz, M. L. Graham, R. Humphreys, R. Kurucz, A. Dolphin, M. Kriek, S. Rajendran, T. Davis, I. Hubeny, C. Leitherer, F. Nieva, D. Kasen, J. Mauerhan, D. Kelson, J. M. Silverman, A. Oscoz Abaz and Z. Levay for help with the observations and other assistance. The Keck Observatory was made possible with the support of the W. M. Keck Foundation. NASA/STScI grants 14041, 14199, 14208, 14528, 14872 and 14922 provided financial support. P.L.K., A.V.F. and W.Z. are grateful for assistance from the Christopher R. Redlich Fund, the TABASGO Foundation and the Miller Institute for Basic Research in Science (U. C. Berkeley). The work of A.V.F. was completed in part at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. J.M.D. acknowledges support of projects AYA2015-64508-P (MINECO/FEDER, UE) and AYA2012-39475-C02-01 and the consolider project CSD2010-00064 funded by the Ministerio de Economia y Competitividad. P.G.P.-G. acknowledges support from Spanish government MINECO grants AYA2015-70815-ERC and AYA2015-63650-P. M.O. is supported by JSPS KAKENHI grants 26800093 and 15H05892. M.J. acknowledges support by the Science and Technology Facilities Council (grant ST/L00075X/1). R.J.F. is supported by NSF grant AST-1518052 and Sloan and Packard Foundation fellowships. M.N. acknowledges support from PRIN-INAF-2014 O.G. was supported by NSF Fellowship under award AST-1602595. J.H. acknowledges support from a VILLUM FONDEN Investigator Grant (16599). HST imaging was obtained at https://archive.stsci.edu.

Author information


  1. Department of Astronomy, University of California, Berkeley, CA, USA

    • Patrick L. Kelly
    • , Timothy W. Ross
    • , Alexei V. Filippenko
    •  & Weikang Zheng
  2. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA

    • Patrick L. Kelly
  3. IFCA, Instituto de Física de Cantabria (UC-CSIC), Santander, Spain

    • Jose M. Diego
  4. Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA

    • Steven Rodney
  5. Institute for Astronomy, University of Hawaii, Honolulu, HI, USA

    • Nick Kaiser
  6. Department of Theoretical Physics, University of the Basque Country, Bilbao, Spain

    • Tom Broadhurst
  7. IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, Bilbao, Spain

    • Tom Broadhurst
  8. Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel

    • Adi Zitrin
  9. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

    • Tommaso Treu
    • , Takahiro Morishita
    •  & Xin Wang
  10. Departamento de Astrofísica, Facultad de critical curve. Físicas, Universidad Complutense de Madrid, Madrid, Spain

    • Pablo G. Pérez-González
  11. Astronomical Institute, Tohoku University, Sendai, Japan

    • Takahiro Morishita
  12. Institute for International Advanced Research and Education, Tohoku University, Sendai, Japan

    • Takahiro Morishita
  13. Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham, UK

    • Mathilde Jauzac
  14. Institute for Computational Cosmology, Durham University, Durham, UK

    • Mathilde Jauzac
  15. Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa

    • Mathilde Jauzac
  16. Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    • Jonatan Selsing
    • , Jens Hjorth
    • , Lise Christensen
    •  & Claudio Grillo
  17. Research Center for the Early Universe, University of Tokyo, Tokyo, Japan

    • Masamune Oguri
  18. Department of Physics, University of Tokyo, Tokyo, Japan

    • Masamune Oguri
  19. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Kashiwa, Japan

    • Masamune Oguri
  20. Space Telescope Science Institute, Baltimore, MD, USA

    • Laurent Pueyo
    • , Gabriel Brammer
    •  & Adam G. Riess
  21. Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA

    • Alexei V. Filippenko
  22. Steward Observatory, University of Arizona, Tucson, AZ, USA

    • Nathan Smith
    • , Brenda L. Frye
    •  & Benjamin J. Weiner
  23. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • S. Bradley Cenko
  24. Joint Space-Science Institute, University of Maryland, College Park, MD, USA

    • S. Bradley Cenko
  25. Las Cumbres Observatory, Goleta, CA, USA

    • D. Andrew Howell
    •  & Curtis McCully
  26. Department of Physics, University of California, Santa Barbara, CA, USA

    • D. Andrew Howell
    •  & Curtis McCully
  27. Univ. Lyon, Univ. Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval, France

    • Johan Richard
  28. Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

    • Saurabh W. Jha
  29. Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA, USA

    • Ryan J. Foley
  30. Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, USA

    • Colin Norman
    •  & Adam G. Riess
  31. Department of Physics, University of California, Davis, CA, USA

    • Marusa Bradac
  32. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil

    • Alberto Molino Benito
  33. Department of Astronomy, University of Geneva, Versoix, Switzerland

    • Antonio Cava
  34. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands

    • Selma E. de Mink
  35. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

    • Or Graur
  36. Department of Astrophysics, American Museum of Natural History, New York, NY, USA

    • Or Graur
  37. Dipartimento di Fisica, Universitá degli Studi di Milano, Milan, Italy

    • Claudio Grillo
  38. Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo, Japan

    • Ryota Kawamata
  39. Laboratoire d’Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland

    • Jean-Paul Kneib
  40. National Optical Astronomical Observatory, Tucson, AZ, USA

    • Thomas Matheson
  41. INAF, Osservatorio Astronomico di Trieste, Trieste, Italy

    • Mario Nonino
  42. Instituto de Astrofisica de Canarias (IAC), San Cristóbal de La Laguna, Spain

    • Ismael Pérez-Fournon
  43. Universidad de La Laguna, Dpto. Astrofisica, San Cristóbal de La Laguna, Spain

    • Ismael Pérez-Fournon
  44. Dipartimento di Fisica e Scienze della Terra, Universitá degli Studi di Ferrara, Ferrara, Italy

    • Piero Rosati
  45. Leibniz-Institut fur Astrophysik Potsdam (AIP), Potsdam, Germany

    • Kasper Borello Schmidt
  46. University of Michigan, Department of Astronomy, Ann Arbor, MI, USA

    • Keren Sharon


  1. Search for Patrick L. Kelly in:

  2. Search for Jose M. Diego in:

  3. Search for Steven Rodney in:

  4. Search for Nick Kaiser in:

  5. Search for Tom Broadhurst in:

  6. Search for Adi Zitrin in:

  7. Search for Tommaso Treu in:

  8. Search for Pablo G. Pérez-González in:

  9. Search for Takahiro Morishita in:

  10. Search for Mathilde Jauzac in:

  11. Search for Jonatan Selsing in:

  12. Search for Masamune Oguri in:

  13. Search for Laurent Pueyo in:

  14. Search for Timothy W. Ross in:

  15. Search for Alexei V. Filippenko in:

  16. Search for Nathan Smith in:

  17. Search for Jens Hjorth in:

  18. Search for S. Bradley Cenko in:

  19. Search for Xin Wang in:

  20. Search for D. Andrew Howell in:

  21. Search for Johan Richard in:

  22. Search for Brenda L. Frye in:

  23. Search for Saurabh W. Jha in:

  24. Search for Ryan J. Foley in:

  25. Search for Colin Norman in:

  26. Search for Marusa Bradac in:

  27. Search for Weikang Zheng in:

  28. Search for Gabriel Brammer in:

  29. Search for Alberto Molino Benito in:

  30. Search for Antonio Cava in:

  31. Search for Lise Christensen in:

  32. Search for Selma E. de Mink in:

  33. Search for Or Graur in:

  34. Search for Claudio Grillo in:

  35. Search for Ryota Kawamata in:

  36. Search for Jean-Paul Kneib in:

  37. Search for Thomas Matheson in:

  38. Search for Curtis McCully in:

  39. Search for Mario Nonino in:

  40. Search for Ismael Pérez-Fournon in:

  41. Search for Adam G. Riess in:

  42. Search for Piero Rosati in:

  43. Search for Kasper Borello Schmidt in:

  44. Search for Keren Sharon in:

  45. Search for Benjamin J. Weiner in:


P.L.K. planned and analysed observations, wrote the manuscript and developed simulations. P.L.K., S.R., P.G.P.-G., T.Ma., M.J., J.S., A.V.F., J.H., D.A.H., S.B.C., B.L.F., M.B., W.Z., G.B., A.M.B., A.C., L.C., C.G., J.-P.K., T.Mo., C.M., M.N., I.P.-F., A.G.R., P.R., K.B.S. and B.J.W. obtained follow-up HST and ground-based imaging. J.M.D. developed microlensing simulations. S.R., T.B., A.Z., T.T., P.G.P.-G., M.J., M.O., A.V.F., N.S., J.H., B.L.F. and S.E.d.M. helped to prepare the manuscript. N.K. interpreted the microlensing events and derived analytic rate formula. T.B., A.Z., T.T., M.J., M.O., X.W., S.W.J., R.J.F., S.E.d.M., O.G. and B.J.W. aided the interpretation. P.G.P.-G. modelled the arc’s SED. T.Mo. modelled the ICL. M.O., J.R., R.K. and K.S. modelled the galaxy cluster. L.P. and C.N. considered the possibility that Icarus could exhibit diffraction effects. T.W.R. analysed the microlensing simulations. N.S. aided interpretation of the star’s SED. X.W. estimated the gas-phase metallicity at Icarus’s location. M.N. extracted photometry of Icarus using a complementary pipeline.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Patrick L. Kelly.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–14, Supplementary Tables 1–4, Supplementary References 1–35 and Supplementary Text.

About this article

Publication history