Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The detection of the imprint of filaments on cosmic microwave background lensing


Galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS)2, 6-Degree-Field Survey (6dF)3, Galaxy And Mass Assembly survey (GAMA)4 and VIMOS Public Extragalactic Redshift Survey (VIPERS)5, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev–Zel’dovich observations might reveal the properties of ‘missing baryons’, the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The filament length as a function of redshift.
Fig. 2: Cross angular power spectrum.
Fig. 3: Relationship between filament map and galaxy map.


  1. Colless, M. et al. The 2dF galaxy redshift survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001).

    ADS  Article  Google Scholar 

  2. Eisenstein, D. J. et al. SDSS-III: massive spectroscopic surveys of the distant universe, the Milky Way galaxy, and extra-solar planetary systems. Astron. J. 142, 72 (2011).

    ADS  Article  Google Scholar 

  3. Jones, H. D. et al. The 6dF galaxy survey: final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 399, 683–698 (2009).

    ADS  Article  Google Scholar 

  4. Liske, J. et al. Galaxy and mass assembly (GAMA): end of survey report and data release 2. Mon. Not. R. Astron. Soc. 452, 2087–2126 (2015).

    ADS  Article  Google Scholar 

  5. Scodeggio, M. et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2). Astron. Astrophys. 609, A84 (2018).

    Article  Google Scholar 

  6. Bond, R. J., Kofman, L. & Pogosyan, D. How filaments are woven into the cosmic web. Nature 380, 603–606 (1996).

    ADS  Article  Google Scholar 

  7. Smith, K. M., Zahn, O. & Dore, O. Detection of gravitational lensing in the cosmic microwave background. Phys. Rev. D 76, 043510 (2007).

    ADS  Article  Google Scholar 

  8. Hirata, C. M., Ho, S., Padmanabhan, N., Seljak, U. & Bahcall, N. A. Correlation of CMB with large-scale structure: II. Weak lensing. Phys. Rev. D 78, 043520 (2008).

    ADS  Article  Google Scholar 

  9. Bleem, L. E. et al. A measurement of the correlation of galaxy surveys with CMB lensing convergence maps from the South Pole Telescope. Astron. J. 753, L9 (2012).

    ADS  Article  Google Scholar 

  10. Sherwin, B. D. et al. The Atacama Cosmology Telescope: cross-correlation of CMB lensing and quasars. Phys. Rev. D 86, 083006 (2012).

    ADS  Article  Google Scholar 

  11. Ferraro, S., Sherwin, B. D. & Spergel, D. N. WISE measurement of the integrated Sachs–Wolfe effect. Phys. Rev. D 91, 083533 (2015).

    ADS  Article  Google Scholar 

  12. Allison, R. et al. The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing. Mon. Not. R. Astron. Soc. 451, 849–858 (2015).

    ADS  Article  Google Scholar 

  13. Giannantonio, T. et al. CMB lensing tomography with the DES Science Verification galaxies. Mon. Not. R. Astron. Soc. 456, 3213–3244 (2016).

    ADS  Article  Google Scholar 

  14. Pullen, A. R., Alam, S., He, S. & Ho, S. Constraining gravity at the largest scales through CMB lensing and galaxy velocities. Mon. Not. R. Astron. Soc. 460, 4098–4108 (2016).

    ADS  Article  Google Scholar 

  15. Doux, C. et al. First detection of cosmic microwave background lensing and Lyman-α forest bispectrum. Phys. Rev. D 94, 103506 (2016).

    ADS  Article  Google Scholar 

  16. Singh, S., Mandelbaum, R. & Brownstein, J. R. Cross-correlating Planck CMB lensing with SDSS: lensing–lensing and galaxy–lensing cross-correlations. Mon. Not. R. Astron. Soc. 464, 2120–2138 (2017).

    ADS  Article  Google Scholar 

  17. Geach, E. G. & Peacock, J. A. Cluster richness-mass calibration with cosmic microwave background lensing. Nat. Astron. 1, 795–799 (2017).

    ADS  Article  Google Scholar 

  18. Chen, Y. et al. Cosmic web reconstruction through density ridges: catalogue. Mon. Not. R. Astron. Soc. 461, 3896–3909 (2016).

    ADS  Article  Google Scholar 

  19. Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).

    ADS  Article  Google Scholar 

  20. Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astron. J. Suppl. 219, 12 (2015).

    ADS  Article  Google Scholar 

  21. Chen, Y., Ho, S., Freeman, P. E., Genovese, C. R. & Wasserman, L. Cosmic web reconstruction through density ridges: method and algorithm. Mon. Not. R. Astron. Soc. 454, 1140–1156 (2015).

    ADS  Article  Google Scholar 

  22. Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014).

  23. Planck Collaboration. Planck 2013 results. XVII. Gravitational lensing by large-scale structure. Astron. Astrophys. 571, A17 (2014).

  24. Clampitt, J., Jain, B., Takada, M. & Miyatake, H. Detection of stacked filament lensing between SDSS luminous red galaxies. Mon. Not. R. Astron. Soc. 457, 2391–2400 (2016).

    ADS  Article  Google Scholar 

  25. Epps, S. D. & Hudson, M. J. The weak lensing masses of filaments between luminous red galaxies. Mon. Not. R. Astron. Soc. 468, 2605–2613 (2017).

    ADS  Article  Google Scholar 

  26. Higuchi, Y., Oguri, M. & Shirasaki, M. Statistical properties of filaments in weak gravitational lensing. Mon. Not. R. Astron. Soc. 441, 745–756 (2014).

    ADS  Article  Google Scholar 

  27. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

  28. Limber, D. N. The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. Astrophys. J. 117, 134 (1953).

    ADS  MathSciNet  Article  Google Scholar 

  29. Rykoff, E. S. et al. redMaPPer I: Algorithm and SDSS DR8 Catalog. Astron. J. 785, 104 (2014).

    Article  Google Scholar 

  30. de Graaff, A., Cai, Y. C., Heymans, C. & Peacock, J. A. Missing baryons in the cosmic web revealed by the Sunyaev–Zel’dovich effect. Preprint at (2017).

  31. Wassermann, L. All of Nonparametric Statistics (Springer Science and Business Media, New York, USA, 2017).

  32. Chen, Y. et al. Detecting effects of filaments on galaxy properties in the Sloan Digital Sky Survey III. Mon. Not. R. Astron. Soc. 466, 1880–1893 (2017).

    ADS  Article  Google Scholar 

  33. Chen, Y. C., Genovese, C. R. & Wasserman, L. Asymptotic theory for density ridges. Ann. Statistics 43, 1896–1928 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  34. Bagla, J. S. A TreePM code for cosmological N-body simulations. Astron. Astrophys. 23, 185–196 (2002).

    Article  Google Scholar 

  35. White, M. J., Hernquist, L. & Springel, V. Simulating the Sunyaev–Zel’dovich effect(s): Including radiative cooling and energy injection by galactic winds. Astron. J. 579, 16 (2002).

    ADS  Article  Google Scholar 

  36. Reid, B. A., Seo, H., Leauthaud, A., Tinker, J. L. & White, M. A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies. Mon. Not. R. Astron. Soc. 444, 476–502 (2014).

    ADS  Article  Google Scholar 

  37. Peacock, J. A. & Smith, R. E. Halo occupation numbers and galaxy bias. Mon. Not. R. Astron. Soc. 318, 1144–1156 (2000).

    ADS  Article  Google Scholar 

  38. Seljak, U. Analytic model for galaxy and dark matter clustering. Mon. Not. R. Astron. Soc. 318, 203–213 (2000).

    ADS  Article  Google Scholar 

  39. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–808 (2000).

    ADS  Article  Google Scholar 

  40. White, M. J., Hernquist, L. & Springel, V. The halo model and numerical simulations. Astron. J. 550, 129–132 (2001).

    Article  Google Scholar 

  41. Berlind, A. A. & Weinberg, D. H. The Halo occupation distribution: towards an empirical determination of the relation between galaxies and mass. Astron. J. 575, 587–616 (2002).

    ADS  Article  Google Scholar 

  42. Cooray, A. & Sheth, R. K. Halo models of large scale structure. Phys. Rept. 372, 1–129 (2002).

    ADS  Article  MATH  Google Scholar 

  43. Beutler, F. et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: testing gravity with redshift-space distortions using the power spectrum multipoles. Mon. Not. R. Astron. Soc. 443, 1065–1089 (2014).

    ADS  Article  Google Scholar 

  44. White, M., Tinker, J. L. & McBride, C. K. Mock galaxy catalogues using the quick particle mesh method. Mon. Not. R. Astron. Soc. 437, 2594–2606 (2014).

    ADS  Article  Google Scholar 

  45. Carlson, J. & White, M. Embedding realistic surveys in simulations through volume remapping. Astron. J. Suppl. 190, 311–314 (2010).

    ADS  Article  Google Scholar 

Download references


We thank A. Pullen and E. Giusarma for discussion, M. White for providing us with the N-body simulations, and A. Krolewski and B. Horowitz for comments on the draft. S. Ho is supported by NASA and DOE for this work. S. He is supported by NSF-AST1517593 for this work. S.A. is supported by the European Research Council through the COSFORM Research Grant (#670193). S.F. thanks the Miller Institute for Basic Research in Science at the University of California, Berkeley for support. Some of the results in this paper have been derived using the HEALPix package. The authors would like to acknowledge the support of NERSC.

Author information

Authors and Affiliations



S. He led the project and most of the manuscript writing. S.A. provided the sky mocks for galaxies and dark matter particles as well as wrote the text relative to sky mock for Filaments and Dark Matter in the Method section. S.F. helped with the theoretical modelling and the interpretation of the results, as well as writing part of the manuscript. Y.C. provided the filament intensity maps for data and simulations. S.Ho conceived the idea of cross-correlating filaments with CMB lensing. All authors contributed to the interpretation of the data and commented on the manuscript.

Corresponding author

Correspondence to Siyu He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, S., Alam, S., Ferraro, S. et al. The detection of the imprint of filaments on cosmic microwave background lensing. Nat Astron 2, 401–406 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing