Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

Abstract

An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this ‘Galactic centre excess’. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Residual map of the 15° × 15° region of interest for E ≥ 667 MeV.
Fig. 2: Differential flux of the new, statistically significant components in the Galactic centre.

References

  1. 1.

    Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    Goodenough, L. & Hooper, D. Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi Gamma Ray Space Telescope. Preprint at http://arxiv.org/abs/0910.2998 (2009).

  3. 3.

    Ackermann, M. et al. The Fermi Galactic Center GeV excess and implications for dark matter. Astrophys. J. 840, 43 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Calore, F., Cholis, I. & Weniger, C. Background model systematics for the Fermi GeV excess. J. Cosm. Astropart. Phys. 3, 38 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Abazajian, K. N. & Kaplinghat, M. Detection of a gamma-ray source in the Galactic Center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission. Phys. Rev. D 86, 083511 (2012).

    ADS  Google Scholar 

  6. 6.

    O’Leary, R. M., Kistler, M. D., Kerr, M. & Dexter, J. Young pulsars and the Galactic Center GeV gamma-ray excess. Preprint at http://arXiv.org/abs/1504.02477 (2015).

  7. 7.

    Cholis, I. et al. The Galactic Center GeV excess from a series of leptonic cosmic-ray outbursts. J. Cosm. Astropart. Phys. 12, 005 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Acero, F. et al. Development of the model of Galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. Astrophys. J. Suppl. 223, 26 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Macias, O. & Gordon, C. Contribution of cosmic rays interacting with molecular clouds to the Galactic Center gamma-ray excess. Phys. Rev. D 89, 063515 (2014).

    ADS  Google Scholar 

  10. 10.

    Pohl, M., Englmaier, P. & Bissantz, N. Three-dimensional distribution of molecular gas in the barred Milky Way. Astrophys. J. 677, 283–291 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Acero, F. et al. Fermi Large Area Telescope third source catalog. Astrophys. J. Suppl. 218, 23 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Keeley, R., Abazajian, K., Kwa, A., Rodd, N. & Safdi, B. What the Milky Way’s dwarfs tell us about the Galactic Center extended excess Preprint at http://arXiv.org/abs/1710.03215 (2017).

  13. 13.

    Lee, S. K., Lisanti, M., Safdi, B. R., Slatyer, T. R. & Xue, W. Evidence for unresolved γ -ray point sources in the inner galaxy. Phys. Rev. Lett. 116, 051103 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Bartels, R., Krishnamurthy, S. & Weniger, C. Strong support for the millisecond pulsar origin of the Galactic Center GeV excess. Phys. Rev. Lett. 116, 051102 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Horiuchi, S., Kaplinghat, M. & Kwa, A. Investigating the uniformity of the excess gamma rays towards the Galactic Center region. J. Cosm. Astropart. Phys. 1611, 053 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Ploeg, H., Gordon, C., Crocker, R. & Macias, O. Consistency between the luminosity function of resolved millisecond pulsars and the Galactic Center excess. J. Cosm. Astropart. Phys. 1708, 015 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Portail, M., Wegg, C. & Gerhard, O. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge. Mon. Not. R. Astron. Soc. 450, L66–L70 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Nataf, D. M., Udalski, A., Gould, A., Fouqué, P. & Stanek, K. Z. The split red clump of the Galactic Bulge from OGLE-III. Astrophys. J. Lett. 721, L28–L32 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Ness, M. & Lang, D. The X-shaped bulge of the Milky Way revealed by WISE. Astrophys. J. 152, 14 (2016).

    ADS  Google Scholar 

  20. 20.

    Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astrophys. J. 140, 1868–1881 (2010).

    Google Scholar 

  21. 21.

    Joo, S.-J., Lee, Y.-W. & Chung, C. New insight on the origin of the double red clump in the Milky Way bulge. Astrophys. J. 840, 98 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Launhardt, R., Zylka, R. & Mezger, P. G. The nuclear bulge of the Galaxy. III. Large-scale physical characteristics of stars and interstellar matter. Astron. Astrophys. 384, 112–139 (2002).

    ADS  Article  Google Scholar 

  23. 23.

    Nishiyama, S. et al. Magnetically confined interstellar hot plasma in the nuclear bulge of our Galaxy. Astrophys. J. Lett. 769, L28 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Ackermann, M. et al. The spectrum and morphology of the Fermi bubbles. Astrophys. J. 793, 64 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Winter, M., Zaharijas, G., Bechtol, K. & Vandenbroucke, J. Estimating the GeV emission of millisecond pulsars in dwarf spheroidal galaxies. Astrophys. J. 832, L6 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Abdo, A. A. et al. A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope. Astron. Astrophys. 524, A75 (2010).

    Article  Google Scholar 

  29. 29.

    Bartels, R., Storm, E., Weniger, C. & Calore, F. The Fermi-LAT GeV excess traces stellar mass in the Galactic bulge. Preprint at http://arXiv.org/abs/1711.04778 (2017).

  30. 30.

    Strong, A. W. et al. Galprop version 54: explanatory supplement. https://galprop.stanford.edu/download/manuals/galprop_v54.pdf (2011).

  31. 31.

    Ajello, M. et al. Fermi-LAT observations of high-energy γ-ray emission toward the Galactic center. Astrophys. J. 819, 44 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Nolan, P. L. et al. Fermi Large Area Telescope second source catalog. Astrophys. J. Suppl. 199, 31 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Mattox, J. et al. The likelihood analysis of EGRET data. Astrophys. J. 461, 396 (1996).

    ADS  Article  Google Scholar 

  34. 34.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60 (1938).

    Article  Google Scholar 

  35. 35.

    Yang, R.-Z. & Aharonian, F. On the GeV excess in the diffuse γ-ray emission towards the Galactic centre. Astron. Astrophys. 589, A117 (2016).

    Article  Google Scholar 

  36. 36.

    Gordon, C. & Macias, O. Dark matter and pulsar model constraints from Galactic center Fermi-LAT gamma ray observations. Phys. Rev. D 88, 083521 (2013).

    ADS  Google Scholar 

  37. 37.

    Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487 (1996).

    ADS  Article  Google Scholar 

  39. 39.

    Green, D. A. A catalogue of 294 Galactic supernova remnants. Bull. Astron. Soc. India 42, 47–58 (2014).

    ADS  Google Scholar 

  40. 40.

    Massaro, E. et al. Roma-BZCAT: a multifrequency catalogue of blazars. Astron. Astrophys. 495, 691–696 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Fermi-LAT Collaboration Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope. Preprint at https://arxiv.org/abs/1705.00009 (2017).

  42. 42.

    Freudenreich, H. T. A COBE model of the Galactic bar and disk. Astrophys. J. 492, 495–510 (1998).

    ADS  Article  Google Scholar 

  43. 43.

    Hooper, D. & Linden, T. On the origin of the gamma rays from the Galactic center. Phys. Rev. D 84, 123005 (2011).

    ADS  Google Scholar 

  44. 44.

    Abazajian, K. N., Canac, N., Horiuchi, S. & Kaplinghat, M. Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic center. Phys. Rev. D 90, 023526 (2014).

    ADS  Google Scholar 

  45. 45.

    Daylan, T. et al. The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter. Phys. Dark Univ. 12, 1–23 (2016).

    Article  Google Scholar 

  46. 46.

    Self, S. G. & Liang, K.-Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 605–610 (1987).

    MathSciNet  Article  Google Scholar 

  47. 47.

    Ackermann, M. et al. Fermi-LAT observations of the diffuse gamma-ray emission: implications for cosmic rays and the interstellar medium. Astrophys. J. 750, 3 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    Casandjian, J.-M. Local Hi emissivity measured with Fermi-LAT and implications for cosmic-ray spectra. Astrophys. J. 806, 240 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

R.M.C. was the recipient of an Australian Research Council Future Fellowship (FT110100108). S.H. is supported by the U.S. Department of Energy, Office of Science, under award number de-sc0018327. We thank D. Lang for making available code and data that helped with generating the X-bulge template and both S. Nishiyama and K. Yasui for providing the data for the nuclear bulge template. We acknowledge the use of public data and software from the Fermi data archives (http://fermi.gsfc.nasa.gov/ssc/). Finally, the authors would also like to thank F. Aharonian, A. M. Brown, F. Calore, J.-M. Casandjian, H. T. Cromartie, S. Digel, T. Enßlin, M. Kaplinghat, K. Freeman, O. Gerhard, O. Gnedin, X. Huang, N. McClure-Griffiths, D. Nataf, H. Ploeg, B. Roberts, M. Winter, R. Tuffs and G. Zaharijas for enlightening discussions.

Author information

Affiliations

Authors

Contributions

O.M. designed and performed the majority of the data analysis. O.M. also constructed the Fermi bubbles, Sun, Moon, inverse Compton and Loop I templates. C.G. processed the WISE data and derived the mixture distribution formulas. R.M.C. suggested the link with the X-bulge. B.C. processed the hydrodynamical 3D map into annuli density maps. D.P. created the interpolated annuli density maps. C.G. and S.H. assisted with the point source modelling. B.C. and D.P. created the dust maps. M.P. created the 3D HI and CO maps. All authors contributed to the interpretation of the results. The text of the final manuscript was mainly written by O.M. and C.G., but all authors had some contribution.

Corresponding author

Correspondence to Oscar Macias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3, Supplementary Figures 1–10, Supplementary Tables 1–4

Supplementary Dataset 1

FITS version of Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macias, O., Gordon, C., Crocker, R.M. et al. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess. Nat Astron 2, 387–392 (2018). https://doi.org/10.1038/s41550-018-0414-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing