A dual origin for water in carbonaceous asteroids revealed by CM chondrites

Abstract

Carbonaceous asteroids represent the principal source of water in the inner Solar System and might correspond to the main contributors for the delivery of water to Earth. Hydrogen isotopes in water-bearing primitive meteorites, for example carbonaceous chondrites, constitute a unique tool for deciphering the sources of water reservoirs at the time of asteroid formation. However, fine-scale isotopic measurements are required to unravel the effects of parent-body processes on the pre-accretion isotopic distributions. Here, we report in situ micrometre-scale analyses of hydrogen isotopes in six CM-type carbonaceous chondrites, revealing a dominant deuterium-poor water component (δD = −350 ± 40‰) mixed with deuterium-rich organic matter. We suggest that this deuterium-poor water corresponds to a ubiquitous water reservoir in the inner protoplanetary disk. A deuterium-rich water signature has been preserved in the least altered part of the Paris chondrite (δDParis ≥ −69 ± 163‰) in hydrated phases possibly present in the CM rock before alteration. The presence of the deuterium-enriched water signature in Paris might indicate that transfers of ice from the outer to the inner Solar System were significant within the first million years of the history of the Solar System.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Measured D/H versus C/H ratios in the matrices of CM chondrites.
Fig. 2: D/H ratios of water and of whole rock for the measured chondrites as a function of the alteration index6,8.
Fig. 3: Whole-rock and matrix D/H ratios of the studied CM chondrites as a function of H2O in weight per cent.

References

  1. 1.

    Marty, B. et al. Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Oba, Y. & Naraoka, H. Elemental and isotope behavior of macromolecular organic matter from CM chondrites during hydrous pyrolysis. Meteorit. Planet. Sci. 44, 943–953 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Alexander, C. M. O. ’D. et al. Deuterium enrichments in chondritic macromolecular material—implications for the origin and evolution of organics, water and asteroids. Geochim. Cosmochim. Acta 74, 4417–4437 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Remusat, L., Guan, Y., Wang, Y. & Eiler, J. M. Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early Solar System nebula. Astrophys. J 713, 1048–1058 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Gounelle, M. et al. Hydrogen isotopic composition of water from fossil micrometeorites in howardites. Geochim. Cosmochim. Acta 69, 3431–3443 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Hewins, R. H. et al. The Paris meteorite, the least altered CM chondrite so far. Geochim. Cosmochim. Acta 124, 190–222 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Marrocchi, Y., Gounelle, M., Blanchard, I., Caste, F. & Kearsley, A. T. The Paris CM chondrite: secondary minerals and asteroidal processing. Meteorit. Planet. Sci 49, 1232–1249 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Robert, F. & Epstein, S. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95 (1982).

    ADS  Article  Google Scholar 

  10. 10.

    Alexander, C. M. O. ’D., Fogel, M., Yabuta, H. & Cody, G. D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    Alexander, C. M. O. ’D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Remusat, L. Organics in primitive meteorites. Planet. Mineral 15, 33–65 (2015).

    Google Scholar 

  13. 13.

    Le Guillou, C., Bernard, S., Brearley, A. J. & Remusat, L. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: in situ investigations. Geochim. Cosmochim. Acta 131, 368–392 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Deloule, E. & Robert, F. Interstellar water in meteorites? Geochim. Cosmochim. Acta 59, 4695–4706 (1995).

    ADS  Article  Google Scholar 

  15. 15.

    Bonal, L. et al. Hydrogen isotopic composition of the water in CR chondrites. Geochim. Cosmochim. Acta 106, 111–133 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Piani, L., Robert, F. & Remusat, L. Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water? Earth Planet. Sci. Lett. 415, 154–164 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Ceccarelli, C. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 859–882 (University of Arizona Press, Tucson, 2014).

  18. 18.

    Vacher, L. G., Marrocchi, Y., Verdier-Paoletti, M. J., Villeneuve, J. & Gounelle, M. Inward radial mixing of interstellar water ices in the solar protoplanetary disk. Astrophys. J 827, L1 (2016); erratum 836, L16 (2017).

  19. 19.

    Howard, K. T., Benedix, G. K., Bland, P. A. & Cressey, G. Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): part 2. Degree, nature and settings of aqueous alteration. Geochim. Cosmochim. Acta 75, 2735–2751 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Le Guillou, C. & Brearley, A. Relationships between organics, water and early stages of aqueous alteration in the pristine CR3.0 chondrite MET 00426. Geochim. Cosmochim. Acta 131, 344–367 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Méheut, M., Lazzeri, M., Balan, E. & Mauri, F. First-principles calculation of H/D isotopic fractionation between hydrous minerals and water. Geochim. Cosmochim. Acta 74, 3874–3882 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Eiler, J. M. & Kitchen, N. Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 68, 1395–1411 (2004).

    ADS  Article  Google Scholar 

  23. 23.

    Robert, F. Water and organic matter D/H ratios in the solar system: a record of an early irradiation of the nebula? Planet. Space Sci. 50, 1227–1234 (2002).

    ADS  Article  Google Scholar 

  24. 24.

    Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999).

    ADS  Article  Google Scholar 

  25. 25.

    Browning, L. B., McSween, H. Y. & Zolensky, M. E. Correlated alteration effects in CM carbonaceous chondrites. Geochim. Cosmochim. Acta 60, 2621–2633 (1996).

    ADS  Article  Google Scholar 

  26. 26.

    Leroux, H., Cuvillier, P., Zanda, B. & Hewins, R. H. GEMS-like material in the matrix of the Paris meteorite and the early stages of alteration of CM chondrites. Geochim. Cosmochim. Acta 170, 247–265 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Horstmann, M. et al. Tracking aqueous alteration of CM chondrites—insights from in situ oxygen isotope measurements of calcite. 45th Lunar Planet. Sci. Conf. 1761 (2014).

  28. 28.

    Haack, H. et al. Maribo—a new CM fall from Denmark. Meteorit. Planet. Sci. 47, 30–50 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Lee, M. R., Sofe, M. R., Lindgren, P., Starkey, N. A. & Franchi, I. A. The oxygen isotope evolution of parent body aqueous solutions as recorded by multiple carbonate generations in the Lonewolf Nunataks 94101 CM2 carbonaceous chondrite. Geochim. Cosmochim. Acta 121, 452–466 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Deloule, E., Robert, F. & Doukhan, J. Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta 62, 3367–3378 (1998).

    ADS  Article  Google Scholar 

  31. 31.

    Stephant, A., Remusat, L. & Robert, F. Water in type I chondrules of Paris CM chondrite. Geochim. Cosmochim. Acta 199, 75–90 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    van Kooten, E. M. M. E. et al. A divergent heritage for complex organics in Isheyevo lithic clasts. Geochim. Cosmochim. Acta 205, 119–148 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Engrand, C., Deloule, E., Robert, F., Maurette, M. & Kurat, G. Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study. Meteorit. Planet. Sci. 34, 773–786 (1999).

    ADS  Article  Google Scholar 

  34. 34.

    Aléon, J., Engrand, C., Robert‡, F. & Chaussidon, M. Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases. Geochim. Cosmochim. Acta 65, 4399–4412 (2001).

    ADS  Article  Google Scholar 

  35. 35.

    Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M. & Monteleone, B. D. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Phil. Trans. R. Soc. A 375, 20160209 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Jacquet, E. & Robert, F. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus 223, 722–732 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Yang, L., Ciesla, F. J. & Alexander, C. M. O. ’D. The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 226, 256–267 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Richet, P., Bottinga, Y. & Javoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65–110 (1977).

    ADS  Article  Google Scholar 

  40. 40.

    Drouart, A., Dubrulle, B., Gautier, D. & Robert, F. Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus 140, 129–155 (1999).

    ADS  Article  Google Scholar 

  41. 41.

    Geiss, J. & Gloeckler, G. Isotopic composition of the H, He and Ne in the protosolar cloud. Space Sci. Rev. 106, 3–18 (2003).

    ADS  Article  Google Scholar 

  42. 42.

    Lécluse, C. & Robert, F. Hydrogen isotope exchange reaction rates: origin of water in the inner solar system. Geochim. Cosmochim. Acta 58, 2927–2939 (1994).

    ADS  Article  Google Scholar 

  43. 43.

    Lunine, J. I. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween Jr, H. Y.) 309–319 (University of Arizona Press, Tucson, 2006).

  44. 44.

    Ciesla, F. J., Lauretta, D. S., Cohen, B. A. & Hood, L. L. A nebular origin for chondritic fine-grained phyllosilicates. Science 299, 549–552 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    Yamamoto, D. & Tachibana, S. A kinetic study on hydrous mineral formation reaction between amorphous forsterite and water vapor in protoplanetary disks. 47th Lunar Planet. Sci. Conf. 1733 (2016).

  46. 46.

    Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the Solar System. Science 305, 1763–1766 (2004).

    ADS  Article  Google Scholar 

  47. 47.

    Gehre, M. et al. On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques. Anal. Chem. 87, 5198–5205 (2015).

    Article  Google Scholar 

  48. 48.

    Vinogradoff, V. et al. Paris vs. Murchison: impact of hydrothermal alteration on organic matter in CM chondrites. Geochim. Cosmochim. Acta 212, 234–252 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Yoneda, S. et al. Sayama meteorite: a new CM chondrite fall in Japan with highly aqueously altered textures. 32nd Lunar Planet. Sci. Conf. 2034 (2001).

  50. 50.

    Takaoka, N. et al. Sayama CM2 chondrite: fresh but heavily altered. 32nd Lunar Planet. Sci. Conf. 1645 (2001).

  51. 51.

    Martins, Z., Modica, P., Zanda, B. & d’Hendecourt, L. L. S. The amino acid and hydrocarbon contents of the Paris meteorite: insights into the most primitive CM chondrite. Meteorit. Planet. Sci. 50, 926–943 (2015).

    ADS  Article  Google Scholar 

  52. 52.

    Piani, L., Remusat, L. & Robert, F. Determination of the H isotopic composition of individual components in fine-scale mixtures of organic matter and phyllosilicates with the nanoscale secondary ion mass spectrometry. Anal. Chem. 84, 10199–10206 (2012).

    Article  Google Scholar 

  53. 53.

    Alexander, C. M. O. ’D., Bowden, R., Fogel, M. L. & Howard, K. T. Carbonate abundances and isotopic compositions in chondrites. Meteorit. Planet. Sci. 50, 810–833 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    Williford, K. H. et al. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates. Geobiology 14, 105–128 (2016).

    Article  Google Scholar 

  55. 55.

    Remusat, L., Piani, L. & Bernard, S. Thermal recalcitrance of the organic D-rich component of ordinary chondrites. Earth Planet. Sci. Lett. 435, 36–44 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Verdier-Paoletti, M. J. et al. Oxygen isotope constraints on the alteration temperatures of CM chondrites. Earth Planet. Sci. Lett. 458, 273–281 (2017).

    ADS  Article  Google Scholar 

  57. 57.

    Pizzarello, S., Feng, X., Epstein, S. & Cronin, J. R. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons. Geochim. Cosmochim. Acta 58, 5579–5587 (1994).

    ADS  Article  Google Scholar 

  58. 58.

    Chokai, J. et al. Aqueous alteration mineralogy in CM carbonaceous chondrites. 35th Lunar Planet. Sci. Conf. 1506 (2004).

  59. 59.

    Rubin, A. E. An American on Paris: extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions. Meteorit. Planet. Sci. 50, 1595–1612 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the French National Museum of Natural History (Paris) and B. Zanda for providing the pieces of the Paris chondrite, to F. Robert for providing the samples of Murchison, Murray and Mighei, to the Japanese Museum of Natural History and S. Yoneda for providing the Sayama sample, and to V. Vinogradoff for providing some of the insoluble organic matter isolated from Paris. H. Naraoka from the Planetary Trace Organic Compounds research center is thanked for the measurement of the whole-rock H2O content and D/H ratio of Sayama. F. Baudin from the French Institut des Sciences de la Terre (ISTeP, UPMCUniversité Paris 06) is thanked for the measurement of the bulk carbon content of Paris. N. Kawasaki, Y. Marrocchi, B. Marty, N. Sakamoto, I. Sugawara, S. Tachibana and A. Williams are warmly thanked for fruitful discussions and for providing assistance that allowed this work to be completed. This work was supported by the grant-in-aid for Scientific Research on Innovative Areas “Evolution of molecules in space from interstellar clouds to proto-planetary nebulae” supported by the Ministry of Education, Culture, Sports, Science & Technology, Japan (grant number 50754595, L.P.). This is CRPG contribution #2562.

Author information

Affiliations

Authors

Contributions

L.P. designed the study, analysed the samples and wrote the paper. L.R. and H.Y. were involved in the study design and interpretation of the data and also provided input to the manuscript.

Corresponding author

Correspondence to Laurette Piani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piani, L., Yurimoto, H. & Remusat, L. A dual origin for water in carbonaceous asteroids revealed by CM chondrites. Nat Astron 2, 317–323 (2018). https://doi.org/10.1038/s41550-018-0413-4

Download citation

Further reading