The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

Abstract

Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of ~5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z ~ 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5–10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mid-infrared to radio SED of 24 μm-undetected BzK + UVJ-selected passive galaxies.
Fig. 2: Evolution of the molecular gas fraction M mol/M * as a function of redshift for both quiescent and MS galaxies.
Fig. 3: Galactic SFRs.
Fig. 4: SFE as a function of gas fraction in high-resolution hydrodynamic simulations.

References

  1. 1.

    Lianou, S., Xilouris, E., Madden, S. & Barmby, P. The dustier early-type galaxies deviate from late-type galaxies’ scaling relations. Mon. Not. R. Astron. Soc. 461, 2856–2866 (2016).

  2. 2.

    Sargent, M. T. et al. A direct constraint on the gas content of a massive, passively evolving elliptical galaxy at z = 1.43. Astrophys. J. Lett. 806, 6 (2015).

  3. 3.

    Gobat, R. et al. The early early type: discovery of a passive galaxy at z spec ~ 3. Astrophys. J. Lett. 759, 5 (2012).

  4. 4.

    Glazebrook, K. et al. A massive, quiescent galaxy at redshift of z = 3.717. Nature 544, 71–74 (2017).

  5. 5.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

  6. 6.

    Birnboim, Y. & Dekel, A. Virial shocks in galactic haloes? Mon. Not. R. Astron. Soc. 345, 349–364 (2003).

  7. 7.

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

  8. 8.

    Martig, M., Bournaud, F., Teyssier, R. & Dekel, A. Morphological quenching of star formation: making early-type galaxies red. Astrophys. J. 707, 250–267 (2009).

  9. 9.

    Tacchella, S. et al. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. Science 348, 314–317 (2015).

  10. 10.

    Daddi, E. et al. A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 z 2.5. Astrophys. J. 617, 746–764 (2004).

  11. 11.

    Wuyts, S. et al. What do we learn from IRAC observations of galaxies at 2 < z < 3.5? Astrophys. J. 655, 51–65 (2007).

  12. 12.

    Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

  13. 13.

    Hwang, H. S. et al. Evolution of dust temperature of galaxies through cosmic time as seen by Herschel. Mon. Not. R. Astron. Soc. 409, 75–82 (2010).

  14. 14.

    Smith, M. W. et al. The Herschel reference survey: dust in early-type galaxies and across the Hubble sequence. Astrophys. J. 748, 25 (2012).

  15. 15.

    Magdis, G. et al. The evolving interstellar medium of star-forming galaxies since z = 2 as probed by their infrared spectral energy distributions. Astrophys. J. 760, 23 (2012).

  16. 16.

    Young, L. M. et al. The ATLAS3D project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 414, 940–967 (2011).

  17. 17.

    Young, L. M. et al. The ATLAS3D project—XXVII. Cold gas and the colours and ages of early-type galaxies. Mon. Not. R. Astron. Soc. 444, 3408–3426 (2014).

  18. 18.

    Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

  19. 19.

    Gobat, R. et al. In and out star formation in z ~ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared. Astron. Astrophys. 599, 12 (2017).

  20. 20.

    Saintonge, A. et al. The impact of interactions, bars, bulges, and active galactic nuclei on star formation efficiency in local massive galaxies. Astrophys. J. 758, 17 (2012).

  21. 21.

    Martig, M., Bournaud, F., Croton, D. J., Dekel, A. & Teyssier, R. A diversity of progenitors and histories for isolated spiral galaxies. Astrophys. J. 756, 29 (2012).

  22. 22.

    Johansson, P. H., Naab, T. & Ostriker, J. P. Gravitational heating helps make massive galaxies red and dead. Astrophys. J. Lett. 697, L38–L43 (2009).

  23. 23.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–166 (1955).

  24. 24.

    Grillo, C. & Gobat, R. On the initial mass function and tilt of the fundamental plane of massive early-type galaxies. Mon. Not. R. Astron. Soc. Lett. 402, 67–71 (2010).

  25. 25.

    Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012).

  26. 26.

    Conroy, C. & van Dokkum, P. G. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophys. J. 760, 16 (2012).

  27. 27.

    Larson, D. et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP–derived parameters. Astrophys. J. Suppl. S. 192, 19 (2011).

  28. 28.

    Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 63 (2015).

  29. 29.

    Scoville, N. et al. The Cosmic Evolution Survey (COSMOS): overview. Astrophys. J. Suppl. S. 172, 1–8 (2007).

  30. 30.

    McCracken, H. J. et al. The COSMOS-WIRCam near-infrared imaging survey. I. BzK-selected passive and star-forming galaxy candidates at z 1.4. Astrophys. J. 708, 202–217 (2010).

  31. 31.

    Muzzin, A. et al. A public Ks-selected catalog in the COSMOS/UltraVISTA field: photometry, photometric redshifts, and stellar population parameters. Astrophys. J. Suppl. S. 206, 19 (2013).

  32. 32.

    Le Floc’h, E. et al. Deep Spitzer 24 μm COSMOS imaging. I. The evolution of luminous dusty galaxies—confronting the models. Astrophys. J. 703, 222–239 (2009).

  33. 33.

    Lilly, S. J. et al. zCOSMOS: a large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field. Astrophys. J. Suppl. S. 172, 70–85 (2007).

  34. 34.

    Strazzullo, V. et al. Passive galaxies as tracers of cluster environments at z ~ 2. Astron. Astrophys. 576, 5 (2015).

  35. 35.

    Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P. & Labbé, I. Detection of quiescent galaxies in a bicolor sequence from z = 0–2. Astrophys. J. 691, 1879–1895 (2009).

  36. 36.

    Gobat, Retal Satellite content and quenching of star formation in galaxy groups at z ~ 1.8. Astron. Astrophys. 581, 12 (2015).

  37. 37.

    Lutz, D. et al. PACS Evolutionary Probe (PEP)—a Herschel key program. Astron. Astrophys. 532, 12 (2011).

  38. 38.

    Oliver, S. J. et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 424, 1614–1635 (2012).

  39. 39.

    Geach, J. E. et al. The SCUBA-2 cosmology legacy survey: 850 μm maps, catalogues and number counts. Mon. Not. R. Astron. Soc. 465, 1789–1806 (2017).

  40. 40.

    Aretxaga, I. et al. AzTEC millimetre survey of the COSMOS field—III. Source catalogue over 0.72 deg2 and plausible boosting by large-scale structure. Mon. Not. R. Astron. Soc. 415, 3831–3850 (2011).

  41. 41.

    Smolčić, V. et al. The VLA-COSMOS 3 GHz large project: continuum data and source catalog release. Astron. Astrophys. 602, 19 (2017).

  42. 42.

    Schinnerer, E. et al. The VLA-COSMOS survey. IV. Deep data and joint catalog. Astrophys. J. Suppl. S. 188, 384–404 (2010).

  43. 43.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

  44. 44.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

  45. 45.

    Béthermin, M. et al. Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation. Astron. Astrophys. 573, 17 (2015).

  46. 46.

    Man, A. W. S. et al. Confirming the existence of a quiescent galaxy population out to z = 3: a stacking analysis of mid-, far-infrared and radio data. Astrophys. J. 820, 14 (2016).

  47. 47.

    Viero, M. P. et al. HerMES: the contribution to the cosmic infrared background from galaxies selected by mass and redshift. Astrophys. J. 779, 23 (2013).

  48. 48.

    Bianchi, S. Vindicating single-T modified blackbody fits to Herschel SEDs. Astron. Astrophys. 552, 5 (2013).

  49. 49.

    Berta, S., Lutz, D., Genzel, R., Förster-Schreiber, N. M. & Tacconi, L. J. Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA. Astron. Astrophys. 587, 26 (2016).

  50. 50.

    Genzel, R. et al. Combined CO and dust scaling relations of depletion time and molecular gas fractions with cosmic time, specific star-formation rate, and stellar mass. Astrophys. J. 800, 25 (2015).

  51. 51.

    Magnelli, B. et al. The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M plane up to z ~ 2. Astron. Astrophys. 573, 18 (2015).

  52. 52.

    Best, P. N. & Heckman, T. M. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012).

  53. 53.

    Ciotti, L. & Ostriker, J. P. Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. Astrophys. J. 551, 131–152 (2001).

  54. 54.

    O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ. Astron. Soc. Pac. 110, 493–532 (1998).

  55. 55.

    Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. S. 166, 470–497 (2006).

  56. 56.

    Yun, M. S., Reddi, N. A. & Condon, J. J. Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001).

  57. 57.

    Nyland, K. et al. Star formation in nearby early-type galaxies: the radio continuum perspective. Mon. Not. R. Astron. Soc. 464, 1029–1064 (2017).

  58. 58.

    Ibar, E. Deep multi-frequency radio imaging in the Lockman Hole using the GMRT and VLA—I. The nature of the sub-mJy radio population. Mon. Not. R. Astron. Soc. 397, 281–298 (2009).

  59. 59.

    Thomson, A. P. et al. An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: radio properties and the far-infrared/radio correlation. Mon. Not. R. Astron. Soc. 442, 577–588 (2014).

  60. 60.

    Mannucci, F., Cresci, G., Maiolino, R., Marconi, A. & Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

  61. 61.

    Kashino, D. et al. The FMOS-COSMOS survey of star-forming galaxies at z ~ 1.6. IV. excitation state and chemical enrichment of the interstellar medium. Astrophys. J. 835, 27 (2017).

  62. 62.

    Halliday, C. et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2. I. The stellar metallicity. Astron. Astrophys. 479, 417–425 (2008).

  63. 63.

    Arimoto, N., Matsushita, K., Ishimaru, Y., Ohashi, T. & Renzini, A. The iron discrepancy in elliptical galaxies after ASCA. Astrophys. J. 477, 128–143 (1997).

  64. 64.

    Agius, N. K. et al. GAMA/H-ATLAS: linking the properties of submm detected and undetected early-type galaxies—I. z ≤ 0.06 sample. Mon. Not. R. Astron. Soc. 431, 1929–1946 (2013).

  65. 65.

    Leeuw, L. L., Davidson, J., Dowell, C. D. & Matthews, H. E. Spatially resolved imaging at 350 μm of cold dust in nearby elliptical galaxies. Astrophys. J. Lett. 677, 249–261 (2008).

  66. 66.

    Crocker, A. F., Bureau, M., Young, L. M. & Combes, F. Molecular gas and star formation in early-type galaxies. Mon. Not. R. Astron. Soc. 410, 1197–1222 (2011).

  67. 67.

    Davis, T. A. et al. Molecular and atomic gas in dust lane early-type galaxies—I. Low star formation efficiencies in minor merger remnants. Mon. Not. R. Astron. Soc. 449, 3503–3516 (2015).

  68. 68.

    Lagos, C. D. P. et al. Cosmic evolution of the atomic and molecular gas contents of galaxies. Mon. Not. R. Astron. Soc. 418, 1649–1667 (2011).

  69. 69.

    Lagos, C. D. P. et al. Which galaxies dominate the neutral gas content of the Universe? Mon. Not. R. Astron. Soc. 440, 920–941 (2014).

  70. 70.

    Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 30 (2014).

  71. 71.

    Welch, G. A., Sage, L. J. & Young, L. M. The cool interstellar medium in elliptical galaxies. II. Gas content in the volume-limited sample and results from the combined elliptical and lenticular surveys. Astrophys. J. 725, 100–114 (2010).

  72. 72.

    Sage, L. J., Welch, G. A. & Young, L. M. The cool ISM in elliptical galaxies. I. A survey of molecular gas. Astrophys. J. 657, 232–240 (2007).

  73. 73.

    Chevance, M. et al. On the shapes and structures of high-redshift compact galaxies. Astrophys. J. Lett. 754, 5 (2012).

  74. 74.

    Krogager, J.-K., Zirm, A. W., Toft, S., Man, A. & Brammer, G. A spectroscopic sample of massive, quiescent z ~ 2 galaxies: implications for the evolution of the mass–size relation. Astrophys. J. 797, 14 (2014).

  75. 75.

    Bruce, V. A. et al. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS. Mon. Not. R. Astron. Soc. 444, 1001–1033 (2014).

  76. 76.

    Davis, T. A. et al. The ATLAS3D project—X. On the origin of the molecular and ionized gas in early-type galaxies. Mon. Not. R. Astron. Soc. 417, 882–899 (2011).

  77. 77.

    Katkov, I. Y., Sil’chenko, O. K. & Afanasiev, V. L. Decoupled gas kinematics in isolated S0 galaxies. Mon. Not. R. Astron. Soc. 438, 2798–2803 (2014).

  78. 78.

    Koekemoer, A. M. et al. The COSMOS survey: Hubble Space Telescope Advanced Camera for Surveys observations and data processing. Astrophys. J. Suppl. S. 172, 196–202 (2007).

  79. 79.

    Guo, Y. et al. Color and stellar population gradients of passively evolving galaxies at z ~ 2 from HST/WFC3 deep imaging in the Hubble ultra deep field. Astrophys. J. 735, 17 (2011).

  80. 80.

    Gargiulo, A., Saracco, P., Longhetti, M., La Barbera, F. & Tamburri, S. Spatially resolved colours and stellar population properties in early-type galaxies at z ~ 1.5. Mon. Not. R. Astron. Soc. 425, 2698–2714 (2012).

  81. 81.

    Chan, J. C. C. et al. Sizes, colours gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39. Mon. Not. R. Astron. Soc. 458, 3181–3209 (2016).

  82. 82.

    Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. S. 197, 36 (2011).

  83. 83.

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

  84. 84.

    Mancini, C. et al. High-redshift elliptical galaxies: are they (all) really compact? Mon. Not. R. Astron. Soc. 401, 933–940 (2010).

  85. 85.

    van der Wel, A. et al. 3d-HST + CANDELS: The evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 19 (2014).

  86. 86.

    Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

  87. 87.

    Martig, M. et al. The ATLAS3D project—XXII. Low-efficiency star formation in early-type galaxies: hydrodynamic models and observations. Mon. Not. R. Astron. Soc. 432, 1914–1927 (2013).

  88. 88.

    Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

  89. 89.

    Onodera, M. et al. The ages, metallicities, and element abundance ratios of massive quenched galaxies at z ≥ 1.6. Astrophys. J. 808, 12 (2015).

  90. 90.

    Ventura, P. et al. Dust from asymptotic giant branch stars: relevant factors and modelling uncertainties. Mon. Not. R. Astron. Soc. 439, 977–989 (2014).

  91. 91.

    Noll, S. et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2 IV. The variety of dust populations. Astron. Astrophys. 499, 69–85 (2009).

  92. 92.

    Kriek, M. & Conroy, C. The dust attenuation law in distant galaxies: evidence for variation with spectral type. Astrophys. J. Lett. 775, 6 (2013).

  93. 93.

    Ciotti, L., D’Ercole, A., Pellegrini, S. & Renzini, A. Winds, outflows, and inflows in X-ray elliptical galaxies. Astrophys. J. 376, 380–403 (1991).

  94. 94.

    Finoguenov, A. et al. The XMM-Newton wide-field survey in the COSMOS field: statistical properties of clusters of galaxies. Astrophys. J. Suppl. S. 172, 128–195 (2007).

  95. 95.

    Elvis, M. et al. The Chandra COSMOS survey. I. Overview and point source catalog. Astrophys. J. Suppl. S. 184, 158–171 (2009).

  96. 96.

    Béthermin, M. et al. Clustering, host halos, and environment of z ~ 2 galaxies as a function of their physical properties. Astron. Astrophys. 567, 17 (2014).

  97. 97.

    Leroy, A. K. The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively. Astron. J. 136, 2782–2845 (2008).

  98. 98.

    Saintonge, A. et al. COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies—I. Relations between H2, H i, stellar content and structural properties. Mon. Not. R. Astron. Soc. 415, 32–60 (2011).

  99. 99.

    Bauermeister, A. et al. The EGNoG survey: molecular gas in intermediate-redshift star-forming galaxies. Astrophys. J. 768, 27 (2013).

  100. 100.

    Geach, J. E. et al. On the evolution of the molecular gas fraction of star-forming galaxies. Astrophys. J. Lett. 730, 5 (2011).

  101. 101.

    Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. Lett. 714, L118–L122 (2010).

  102. 102.

    Tacconi, L. J. et al. PHIBSS: molecular gas content and scaling relations in z ~ 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 22 (2013).

  103. 103.

    Boselli, A. et al. Cold gas properties of the Herschel reference survey. II. Molecular and total gas scaling relations. Astron. Astrophys. 564, 18 (2014).

  104. 104.

    Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 34 (2014).

  105. 105.

    Davis, T. A. et al. The ATLAS3D project—XXVIII. Dynamically driven star formation suppression in early-type galaxies. Mon. Not. R. Astron. Soc. 444, 3427–3445 (2014).

Download references

Acknowledgements

The authors thank S. Lianou for providing models of dust emission in local ETGs and V. Smolčić for the 3 GHz radio data. S.J. acknowledges China Scholarship Council funding. The new simulations presented in this work were performed on GENCI resources (allocations 2016-04-2019 and 2017-04-2192).

Author information

R.G. and E.D. devised the project. R.G. analysed the data and wrote the manuscript. G.M. modelled the FIR emission. F.B. and M.M. carried out and analysed the simulations. M.S. and M.B. provided some of the theoretical framework. S.J. provided the MIR catalogue. A.F. analysed the X-ray observations. G.W.W., I.A. and M.Y. provided submillimetre data. H.S.H., A.R., V.S. and F.V. provided critical feedback that helped shape the manuscript.

Correspondence to R. Gobat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading