Letter | Published:

Reconfinement and loss of stability in jets from active galactic nuclei

Nature Astronomyvolume 2pages167171 (2018) | Download Citation


Jets powered by active galactic nuclei appear impressively stable compared with their terrestrial and laboratory counterparts—they can be traced from their origin to distances exceeding their injection radius by up to a billion times1,2. However, some less energetic jets get disrupted and lose their coherence on the scale of their host galaxy1,3. Quite remarkably, on the same scale, these jets are expected to become confined by the thermal pressure of the intra-galactic gas2. Motivated by these observations, we have started a systematic study of active galactic nuclei jets undergoing reconfinement via computer simulations. Here, we show that in the case of unmagnetized relativistic jets, the reconfinement is accompanied by the development of an instability and transition to a turbulent state. During their initial growth, the perturbations have a highly organized streamwise-oriented structure, indicating that it is not the Kelvin–Helmholtz instability, the instability which has been the main focus of the jet stability studies so far4,5. Instead, it is closely related to the centrifugal instability6. This instability is likely to be behind the division of active galactic nuclei jets into two morphological types in the Fanaroff–Riley classification7.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984).

  2. 2.

    Porth, O. & Komissarov, S. S. Causality and stability of cosmic jets. Mon. Not. R. Astron. Soc. 452, 1089–1104 (2015).

  3. 3.

    Laing, R. A. & Bridle, A. H. Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies. Mon. Not. R. Astron. Soc. 437, 3405–3441 (2014).

  4. 4.

    Birkinshaw, M. The Stability of Jets (Cambridge Univ. Press, Cambridge, 1991).

  5. 5.

    Bodo, G., Mignone, A. & Rosner, R. Kelvin–Helmholtz instability for relativistic fluids. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 70, 036304 (2004).

  6. 6.

    Rayleigh, L. On the dynamics of revolving fluids. Proc. R. Soc. A Math. Phys. Eng. Sci. 93, 148–154 (1917).

  7. 7.

    Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31P–36P (1974).

  8. 8.

    Bateman, G. MHD Instabilities (MIT Press, Cambridge, Massachusetts, 1978).

  9. 9.

    Appl, S., Lery, T. & Baty, H. Current-driven instabilities in astrophysical jets. Linear analysis. Astron. Astrophys. 355, 818–828 (2000).

  10. 10.

    Komissarov, S. S., Porth, O. & Lyutikov, M. Stationary relativistic jets. Comput. Astrophys. Cosmol. 2, 9 (2015).

  11. 11.

    Mathews, W. G. & Brighenti, F. Hot gas in and around elliptical galaxies. Ann. Rev. Astron. Astroph. 41, 191–239 (2003).

  12. 12.

    Mart, J. M., Perucho, M. & Gómez, J. L. The internal structure of overpressured, magnetized, relativistic jets. Astrophys. J. 831, 163 (2016).

  13. 13.

    Saric, W. S. Gurtler vortices. Annu. Rev. Fluid Mech. 26, 379–409 (1994).

  14. 14.

    Gourgouliatos, K. N. & Komissarov, S. S. Relativistic centrifugal instability. Preprint at https://arxiv.org/abs/1710.01345 (2017).

  15. 15.

    Matsumoto, J. & Masada, Y. Two-dimensional numerical study for Rayleigh–Taylor and Richtmyer–Meshkov instabilities in relativistic jets. Astrophys. J. Lett. 772, L1 (2013).

  16. 16.

    Matsumoto, J., Aloy, M. A. & Perucho, M. Linear theory of the Rayleigh–Taylor instability at a discontinuous surface of a relativistic flow. Mon. Not. R. Astron. Soc. 472, 1421–1431 (2017).

  17. 17.

    Payne, D. G. & Cohn, H. The stability of confined radio jets—the role of reflection modes. Astrophys. J. 291, 655–667 (1985).

  18. 18.

    Boccardi, B. et al. The stratified two-sided jet of Cygnus A. Acceleration and collimation. Astron. Astrophys. 585, A33 (2016).

  19. 19.

    Komissarov, S. S., Barkov, M. V., Vlahakis, N. & Königl, A. Magnetic acceleration of relativistic active galactic nucleus jets. Mon. Not. R. Astron. Soc. 380, 51–70 (2007).

  20. 20.

    Tchekhovskoy, A. & Bromberg, O. Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff–Riley dichotomy. Mon. Not. Roy. Astron. Soc. 461, L46–L50 (2016).

  21. 21.

    Falle, S. A. E. G. Self-similar jets. Mon. Not. R. Astron. Soc. 250, 581–596 (1991).

  22. 22.

    Komissarov, S. S. & Falle, S. A. E. G. The large-scale structure of FR-II radio sources. Mon. Not. R. Astron. Soc. 297, 1087–1108 (1998).

  23. 23.

    Bicknell, G. V. A model for the surface brightness of a turbulent low Mach number jet. I—theoretical development and application to 3C 31. Astrophys. J. 286, 68–87 (1984).

  24. 24.

    Komissarov, S. S. Mass-loaded relativistic jets. Mon. Not. R. Astron. Soc. 269, 394 (1994).

  25. 25.

    Giovannini, G., Cotton, W. D., Feretti, L., Lara, L. & Venturi, T. VLBI observations of a complete sample of radio galaxies: 10 years later. Astrophys. J. 552, 508–526 (2001).

  26. 26.

    Cohen, M. H. et al. Studies of the jet in Bl Lacertae. I. Recollimation shock and moving emission features. Astrophys. J. 787, 151 (2014).

  27. 27.

    Jorstad, S. G. et al. Kinematics of parsec-scale jets of gamma-ray blazars at 43 GHz within the VLBA-BU-BLAZAR program. Astrophys. J. 846, 98 (2017).

  28. 28.

    Kohler, S., Begelman, M. C. & Beckwith, K. Recollimation boundary layers in relativistic jets. Mon. Not. R. Astron. Soc. 422, 2282–2290 (2012).

  29. 29.

    Wykes, S., Hardcastle, M. J., Karakas, A. I. & Vink, J. S. Internal entrainment and the origin of jet-related broad-band emission in Centaurus A. Mon. Not. R. Astron. Soc. 447, 1001–1013 (2015).

  30. 30.

    Gopal-Krishna & Wiita, P. J. Extragalactic radio sources with hybrid morphology: implications for the Fanaroff–Riley dichotomy. Astron. Astrophys. 363, 507–516 (2000).

  31. 31.

    Keppens, R. et al. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J. Comput. Phys. 231, 718–744 (2012).

  32. 32.

    Porth, O., Xia, C., Hendrix, T., Moschou, S. P. & Keppens, R. MPI-AMRVAC for solar and astrophysics. Astrophys. J. Supp. Ser. 214, 4 (2014).

  33. 33.

    Harten, A., Lax, P. D. & Van Leer, B. in Upwind and High-Resolution Schemes 53–79 (Springer, Berlin Heidelberg, 1997).

  34. 34.

    Sethian, J. A. & Smereka, P. Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35, 341–372 (2003).

  35. 35.

    Perucho, M. & Mart, J. M. A numerical simulation of the evolution and fate of a Fanaroff–Riley type I jet. The case of 3C 31. Mon. Not. R. Astron. Soc. 382, 526–542 (2007).

  36. 36.

    Lohner, R. An adaptive finite element scheme for transient problems in CFD. Comp. Methods Appl. Mech. Eng. 61, 323–338 (1987).

Download references


The authors acknowledge Science and Technology Facilities Council grant ST/N000676/1. Simulations were performed on the Science and Technology Facilities Council-funded DiRAC/UK Magnetohydrodynamics Science Consortia machine, hosted as part of and enabled through the Advanced Research Computing high-performance computing resources and support team at the University of Leeds. We thank O. Porth for insightful discussions of the intricacies of AMRVAC code.

Author information


  1. Department of Applied Mathematics, University of Leeds, Leeds, UK

    • Konstantinos N. Gourgouliatos
    •  & Serguei S. Komissarov
  2. Department of Mathematical Sciences, Durham University, Mountjoy Centre, Durham, UK

    • Konstantinos N. Gourgouliatos


  1. Search for Konstantinos N. Gourgouliatos in:

  2. Search for Serguei S. Komissarov in:


Both authors contributed to planning this research and the analysis of its results. All simulations were carried out by K.N.G.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Konstantinos N. Gourgouliatos or Serguei S. Komissarov.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7 and Supplementary Table 1.

  2. Supplementary Video 1

    Supplementary Video 1.

  3. Supplementary Video 2

    Supplementary Video 2.

  4. Supplementary Video 3

    Supplementary Video 3.

About this article

Publication history