Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Demise of faint satellites around isolated early-type galaxies

A Publisher Correction to this article was published on 12 January 2018

This article has been updated


The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1,2,3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4,5,6,7,8,9,10,11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = −14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = −15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Physical properties of satellite galaxies as a function of absolute magnitude.
Fig. 2: Luminosity function of the field galaxies in the GAMA G15 survey and the SHELS F1 and F2 surveys.
Fig. 3: Physical parameters of galaxies in the seven satellite galaxy systems of Table 1 as a function of host–satellite distance in units of host virial radius.

Change history

  • 12 January 2018

    Owing to a technical error, in the version of this Letter originally published the data points and their outlines in Fig. 1c were shifted relative to their correct positions. This has now been corrected.


  1. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    ADS  Article  Google Scholar 

  2. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, 19–22 (1999).

    ADS  Article  Google Scholar 

  3. Springel, V. et al. The aquarius project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).

    ADS  Article  Google Scholar 

  4. Bothun, G. D. & Sullivan, W. T. III A search for close dwarf companions of elliptical galaxies. Publ. Astron. Soc. Pac. 89, 5–9 (1977).

    ADS  Article  Google Scholar 

  5. Mulchaey, J. S. & Zabludoff, A. I. The isolated elliptical NGC 1132: evidence for a merged group of galaxies? Astrophys. J. 514, 133–137 (1999).

    ADS  Article  Google Scholar 

  6. Madore, B. F. & Freedman, W. L. New surveys for companions to E and S0 galaxies. Astron. Soc. Pacif. Conf. Ser. 327, 178–181 (2004).

    ADS  Google Scholar 

  7. Smith, R. M. & Martinez, V. J. Satellites of isolated elliptical galaxies. Astron. Soc. Pacif. Conf. Ser. 327, 328–332 (2004).

    ADS  Google Scholar 

  8. Ogbuagu-Poledna, B. & Zeilinger, W. W. Dwarf galaxy candidates in the NGC 3665 galaxy group. IAU Colloq. 198, 374–375 (2005).

    ADS  Article  Google Scholar 

  9. Nierenberg, A. M. et al. Luminous satellites. II. Spatial distribution, luminosity function, and cosmic evolution. Astrophys. J. 752, 99 (2012).

    ADS  Article  Google Scholar 

  10. Papastergis, E., Martin, A. M., Giovanelli, R. & Haynes, M. P. The velocity width function of galaxies from the 40% ALFALFA survey: shedding light on the cold dark matter overabundance problem. Astrophys. J. 739, 38 (2011).

    ADS  Article  Google Scholar 

  11. Makarov, D. & Karachentsev, I. Galaxy groups and clouds in the local (z ~ 0.01) universe. Mon. Not. R. Astron. Soc. 412, 2498–2520 (2011).

    ADS  Article  Google Scholar 

  12. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    ADS  Article  Google Scholar 

  13. Park, C., Gott, J. R. III & Choi, Y.-Y. Transformation of morphology and luminosity classes of the SDSS galaxies. Astrophys. J. 674, 784–796 (2008).

    ADS  Article  Google Scholar 

  14. Park, C. & Choi, Y.-Y. Combined effects of galaxy interactions and large-scale environment on galaxy properties. Astrophys. J. 691, 1828–1845 (2009).

    ADS  Article  Google Scholar 

  15. Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. 219, 12 (2015).

    ADS  Article  Google Scholar 

  16. Fabricant, D. et al. Hectospec, the MMT’s 300 optical fiber-fed spectrograph. Publ. Astron. Soc. Pac. 838, 1411–1434 (2005).

    ADS  Article  Google Scholar 

  17. Geller, M. J. et al. SHELS: a complete galaxy redshift survey with R < = 20.6. Astrophys. J. Suppl. 213, 35 (2014).

    ADS  Article  Google Scholar 

  18. Geller, M. J. et al. SHELS: complete redshift surveys of two widely separated fields. Astrophys. J. Suppl. 224, 11 (2016).

    ADS  Article  Google Scholar 

  19. Liske, J. et al. Galaxy and mass assembly (GAMA): end of survey report and data release 2. Mon. Not. R. Astron. Soc. 452, 2087–2126 (2015).

    Google Scholar 

  20. Hong, S. E., Park, C. & Kim, J. The most bound halo particle-galaxy correspondence model: comparison between models with different merger timescales. Astrophys. J. 823, 103 (2016).

    ADS  Article  Google Scholar 

  21. Crnojević, D. et al. The extended halo of Centaurus A: uncovering satellites, streams, and substructures. Astrophys. J. 823, 19 (2016).

    ADS  Article  Google Scholar 

  22. Tully, R. B. et al. Two planes of satellites in the Centaurus A group. Astrophys. J. Lett. 802, 25 (2015).

    ADS  Article  Google Scholar 

  23. Kurtz, M. J. & Mink, D. J. RVSAO 2.0: digital redshifts and radial velocities. Publ. Astron. Soc. Pac. 110, 934–977 (1998).

    ADS  Article  Google Scholar 

  24. Tonry, J. & Davis, M. A survey of galaxy redshifts. I. Data reduction techniques. Astron. J. 84, 1511–1525 (1979).

    ADS  Article  Google Scholar 

  25. Tully, R. B. et al. The extragalactic distance database. Astron. J. 138, 323–331 (2009).

    ADS  Article  Google Scholar 

  26. Cappellari, M. et al. The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria. Mon. Not. R. Astron. Soc. 413, 813–836 (2011).

    ADS  Article  Google Scholar 

  27. Blanton, M. R. et al. The properties and luminosity function of extremely low luminosity galaxies. Astrophys. J. 631, 208–230 (2005).

    ADS  Article  Google Scholar 

  28. Sharina, M. E. et al. Photometric properties of the local volume dwarf galaxies. Mon. Not. R. Astron. Soc. 384, 1544–1562 (2008).

    ADS  Article  Google Scholar 

  29. McConnachie, A. W. The observed properties of dwarf galaxies in and around the local group. Astron. J. 144, 4 (2012).

    ADS  Article  Google Scholar 

Download references


We thank the Korea Institute for Advanced Study for providing the computing resources (KIAS Center for Advanced Computation Linux Cluster System) for this work.

Author information

Authors and Affiliations



C.P. led the project and wrote most of the paper. H.S.H. conducted the spectroscopic survey and data analyses. H.P. analysed the simulation data for comparison with the observation. J.C.L. measured the stellar mass and Sérsic index of the satellite galaxies.

Corresponding author

Correspondence to Ho Seong Hwang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Electronic supplementary material

Supplementary Information

Supplementary Text, Supplementary Figures 1–4, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C., Hwang, H.S., Park, H. et al. Demise of faint satellites around isolated early-type galaxies. Nat Astron 2, 162–166 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing