Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Few and far between

Pulsars — fast-spinning neutron stars — are precision clocks provided by nature. Finding pulsars in the Galactic Centre orbiting Sagittarius A*, the closest supermassive black hole to the Earth, will offer unprecedented opportunities to test general relativity and its alternatives.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Tracking a pulsar as it orbits the central supermassive black hole.

References

  1. Boehle, A. et al. Astrophys. J. 830, 17 (2016).

    ADS  Article  Google Scholar 

  2. Gillessen, S. et al. Astrophys. J. 837, 30 (2017).

    ADS  Article  Google Scholar 

  3. Joshi, P. S. in Springer Handbook of Spacetime (eds Ashtekar, A. & Petkov, V.) 409–436 (Springer, Heidelberg, 2014).

  4. Penrose, R. in General Relativity: An Einstein Centenary Survey (ed. Hawking, S. W.) 581–638 (Cambridge Univ. Press, Cambridge, 1979).

  5. Abbott, B. P. et al. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. Thrane, E., Lasky, P. &  Levin, Y. Preprint at https://arxiv.org/abs/1706.05152 (2017).

  7. Desvignes, G. et al. Mon. Not. R. Astron. Soc 448, 3341–3380 (2016).

    ADS  Article  Google Scholar 

  8. Liu, K. et al. Astrophys. J. 747, 1 (2012).

    ADS  Article  Google Scholar 

  9. Thorne, K. S. Rev. Mod. Phys. 52, 299–340 (1980).

    ADS  Article  Google Scholar 

  10. Doeleman, S. S. et al. Nature 455, 78–80 (2008).

    ADS  Article  Google Scholar 

  11. Falcke, H. & Markoff, S. B. Class. Quantum Grav. 30, 244003 (2013).

  12. Psaltis, D. et al. Astrophys. J. 818, 121 (2016).

  13. Eatough, R. P. et al. Nature 501, 391–394 (2013).

    ADS  Article  Google Scholar 

  14. Goddi, C. et al. Int. J. Mod. Phys. D 26, 1730001 (2017).

    ADS  Article  Google Scholar 

  15. Muno, M. P. et al. Astrophys. J. 622, L113–L116 (2005).

    ADS  Article  Google Scholar 

  16. Wharton, R. S. et al. Astrophys. J. 753, 108 (2012).

    ADS  Article  Google Scholar 

  17. Eatough, R. P. et al. Proc. Adv. Astrophys. SKA (AASKA14) 045 (2015); https://pos.sissa.it/215/045/pdf

  18. Cordes, J. M. & Lazio, T. J. W. Astrophys. J. 475, 557–564 (1997).

  19. Spitler, L. G. et al. Astrophys. J. 780, L3 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

K.L. and R.E. acknowledge financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam under contract no. 610058. Fig. 1 is based on a sketch by R.E. The telescope outline is based on a photograph by E. Middelberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo Liu or Ralph Eatough.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Eatough, R. Few and far between. Nat Astron 1, 812–813 (2017). https://doi.org/10.1038/s41550-017-0327-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0327-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing