Article | Published:

Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097

Nature Astronomyvolume 2pages8389 (2018) | Download Citation


Observations show that massive star formation quenches first at the centres of galaxies. To understand quenching mechanisms, we investigate the thermal and non-thermal energy balance in the central kpc of NGC 1097—a prototypical galaxy undergoing quenching—and present a systematic study of the nuclear star formation efficiency and its dependencies. This region is dominated by the non-thermal pressure from the magnetic field, cosmic rays and turbulence. A comparison of the mass-to-magnetic flux ratio of the molecular clouds shows that most of them are magnetically critical or supported against the gravitational collapse needed to form the cores of massive stars. Moreover, the star formation efficiency of the clouds drops with the magnetic field strength. Such an anti-correlation holds with neither the turbulent nor the thermal pressure. Hence, a progressive build up of the magnetic field results in high-mass stars forming inefficiently, and this may be the cause of the low-mass stellar population in the bulges of galaxies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

  2. 2.

    Gatto, A. et al. The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017).

  3. 3.

    Gressel, O., Elstner, D., Ziegler, U. & Günther, R. Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 486, L35–L38 (2008).

  4. 4.

    Xu, H., Hui, L., Collins, D. C., Li, S. & Norman, M. L. Turbulence and dynamo in galaxy cluster medium: implications on the origin of cluster magnetic fields. Astrophys. J. 698, L14–L17 (2009).

  5. 5.

    Wareing, C. J. et al. Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud. Mon. Not. R. Astron. Soc. 465, 2757–2783 (2017).

  6. 6.

    Beck, R. Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 470, 539–556 (2007).

  7. 7.

    Tabatabaei, F. S., Krause, M., Fletcher, A. & Beck, R. High-resolution radio continuum survey of M33. III. Magnetic fields. Astron. Astrophys. 490, 1005–1017 (2008).

  8. 8.

    Yoast-Hull, T. M., Everett, J. E., Gallagher, J. S. III. & Zweibel, E. G. Winds, clumps, and interacting cosmic rays in M82. Astrophys. J. 768, 53–68 (2013).

  9. 9.

    Tabatabaei, F. S. et al. The radio spectral energy distribution and star-formation rate calibration in galaxies. Astrophys. J. 836, 185–209 (2017).

  10. 10.

    Tabatabaei, F. S. Uncovering star formation feedback and magnetism in galaxies with radio continuum surveys. Highlight. Span. Astrophys. IX 257–262 (2017).

  11. 11.

    Vázquez-Semadeni, E. et al. Molecular cloud evolution—IV. Magnetic fields, ambipolar diffusion and the star formation efficiency. Mon. Not. R. Astron. Soc. 414, 2511–2527 (2011).

  12. 12.

    Körtgen, B. & Banerjee, R. Impact of magnetic fields on molecular cloud formation and evolution. Mon. Not. R. Astron. Soc. 451, 3340–3353 (2015).

  13. 13.

    Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).

  14. 14.

    Pillai, T. et al. Magnetic fields in high-mass infrared dark clouds. Astrophys. J. 799, 74–81 (2015).

  15. 15.

    Colin, P., Vázquez-Semadeni, E. & Gómez, G. C. Molecular cloud evolution—V. Cloud destruction by stellar feedback. Mon. Not. R. Astron. Soc. 435, 1701–1714 (2013).

  16. 16.

    Tasker, E. J., Wadsley, J. & Pudritz, R. Star formation in disk galaxies. III. Does stellar feedback result in cloud death? Astrophys. J. 801, 33–47 (2015).

  17. 17.

    Bell, E. F. Galaxy bulges and their black holes: a requirement for the quenching of star formation. Astrophys. J. 682, 355–360 (2008).

  18. 18.

    Tacchella, S. et al. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. Science 348, 314–317 (2015).

  19. 19.

    Storchi-Bergmann, T. et al. Evidence of a starburst within 9 parsecs of the active nucleus of NGC 1097. Astrophys. J. 624, L13–L16 (2005).

  20. 20.

    Tully, R. B. Nearby Galaxies Catalog (Cambridge Univ. Press, Cambridge, 1988).

  21. 21.

    Higdon, J. L. & Wallin, J. F. A minor-merger interpretation for NGC 1097’s “Jets”. Astrophys. J. 585, 281–297 (2003).

  22. 22.

    Martin, D. C. et al. The UV-optical galaxy color-magnitude diagram. III. Constraints on evolution from the Blue to the red sequence. Astrophys. J. Suppl. Ser. 173, 342–356 (2007).

  23. 23.

    Salim, S. et al. UV star formation rates in the local universe. Astrophys. J. Suppl. Ser. 173, 267–292 (2007).

  24. 24.

    Hsieh, P. Y. et al. Physical properties of the circumnuclear starburst ring in the barred galaxy NGC 1097. Astrophys. J. 736, 129–146 (2011).

  25. 25.

    Martín, S. et al. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097. Astron. Astrophys. 573, 116–129 (2015).

  26. 26.

    Prieto, M. A., Maciejewski, W. & Reunanen, J. Feeding the monster: THE Nucleus of NGC 1097 at subarcsecond Scales in the infrared with the very large telescope. Astron. J. 130, 1472–1481 (2005).

  27. 27.

    Beck, R. et al. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365. Astron. Astrophys. 444, 739–765 (2005).

  28. 28.

    Jogee, S., Scoville, N. & Kenney, J. D. P. The central region of barred galaxies: molecular environment, starbursts, and secular evolution. Astrophys. J. 630, 837–863 (2005).

  29. 29.

    Mezcua, M. & Prieto, M. A. Evidence of parsec-scale jets in low-luminosity active galactic nuclei. Astrophys. J. 787, 62–72 (2014).

  30. 30.

    Fernández-Ontiveros, J. A. et al. Far-infrared line spectra of active galaxies from the Herschel/PACS spectrometer: the complete database. Astrophys. J. Suppl. Ser. 226, 19–45 (2016).

  31. 31.

    Gaensler, B. M., Madsen, G. J., Chaterjee, S. & Mao, S. A. The vertical structure of warm ionised gas in the MilkyWay. Publ. Astron. Soc. Aust. 25, 184–200 (2008).

  32. 32.

    Tabatabaei, F. S. et al. A detailed study of the radio-FIR correlation in NGC 6946 with Herschel-PACS/SPIRE from KINGFISH. Astron. Astrophys. 552, 19–37 (2013).

  33. 33.

    Kazantsev, A. P. Enhancement of a magnetic field by a conducting fluid. Sov. Phys. J. Exp. Theor. Phys. 26, 1031 (1968).

  34. 34.

    Schleicher, D. R. G. & Beck, R. A new interpretation of the far-infrared—radio correlation and the expected breakdown at high redshift. Astron. Astrophys. 556, 142–154 (2013).

  35. 35.

    Tabatabaei, F. S. et al. An empirical relation between the large-scale magnetic field and the dynamical mass in galaxies. Astrophys. J. 818, L10–L16 (2016).

  36. 36.

    Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new jeans resolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62–78 (2011).

  37. 37.

    Ferrière, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73,1031–1066 (2001).

  38. 38.

    Ondrechen, M. P., van der Hulst, J. M. & Hummel, E. H I in barred spiral galaxies. II—NGC 1097. Astrophys. J. 342, 39–48 (1989).

  39. 39.

    Tabatabaei, F. S. et al. Cold dust in the giant barred galaxy NGC 1365. Astron. Astrophys. 555, 128–139 (2013).

  40. 40.

    Murgia, M. et al. The molecular connection to the FIR-radio continuum correlation in galaxies. Astron. Astrophys. 437, 389–410 (2005).

  41. 41.

    Yoast-Hull, T. M., Gallagher, J. S. III & Zweibel, E. G. Equipartition and cosmic ray energy densities in central molecular zones of starbursts. Mon. Not. R. Astron. Soc. 457, L29–L33 (2016).

  42. 42.

    Nakano, T. & Nakamura, T. Gravitational instability of magnetized gaseous Disks 6. Publ. Astron. Soc. Jpn 30, 671–680 (1978).

  43. 43.

    Basu, S. & Mouschovias, T. C. Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. III. Effect of the initial mass-to-flux ratio. Astrophys. J. 453, 271–283 (1995).

  44. 44.

    Heiles, C. & Crutcher, R. Magnetic fields in diffuse HI and molecular clouds. Lect. Notes Phys. 664, 137–182 (2005).

  45. 45.

    Allard, E. L., Knapen, J. H., Peletier, R. F. & Sarzi, M. The star formation history and evolution of the circumnuclear region of M100. Mon. Not. R. Astron. Soc. 371, 1087–1105 (2006).

  46. 46.

    Mouschovias, T. C. Magnetic braking, ambipolar diffusion, cloud cores, and star formation: natural length scales and protostellar masses. Astrophys. J. 373, 169–186 (1991).

  47. 47.

    Li, H. & Henning, T. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature 479, 499–501 (2011).

  48. 48.

    Krumholz, M. R. & McKee, C. F. A minimum column density of 1gcm−2 for massive star formation. Nature 451, 1082–1084 (2008).

  49. 49.

    Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M. & Horellou, C. Magnetic fields and spiral arms in the galaxy M51. Mon. Not. R. Astron. Soc. 412,2396–2416 (2011).

  50. 50.

    Tabatabaei, F. S., Berkhuijsen, E. M., Frick, P., Beck, R. & Schinnerer, E. Multi-scale radio-infrared correlations in M 31 and M 33: the role of magnetic fields and star formation. Astron. Astrophys. 557, 129–143 (2013).

  51. 51.

    Tabatabaei, F. S. et al. High resolution radio continuum survey of M33: II. Thermal and nonthermal emission. Astron. Astrophys. 475, 133–143 (2007).

  52. 52.

    Mezcua, M. et al. The warm molecular gas and dust of Seyfert galaxies: two different phases of accretion? Mon. Not. R. Astron. Soc. 452, 4128–4144 (2015).

  53. 53.

    Phillips, M. M., Pagel, B. E. J., Edmunds, M. G. & Diaz, A. Nuclear activity in two spiral galaxies with jets: NGC 1097 and 1598. Mon. Not. R. Astron. Soc. 210,701–710 (1984).

  54. 54.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

  55. 55.

    Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, Mill Valley, California, 1989).

  56. 56.

    Ehle, M. & Beck., R. Ionized gas and intrinsic magnetic fields in the spiral galaxy NGC6946. Astron. Astrophys. 273, 45–64 (1993).

  57. 57.

    Beck, R. & Krause, M. Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations. Astron. Nachr. 326, 414–427 (2005).

  58. 58.

    Comerón, S. et al. AINUR: Atlas of Images of NUclear Rings. Mon. Not. R. Astron. Soc. 402, 2462–2490 (2010).

  59. 59.

    Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630,250–268 (2005).

Download references


We thank P. Y. Hsieh and R. Beck for providing us with the Submillimeter Array CO and Very Large Array 3.6 cm data. F.S.T. and M.A.P. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness under grant numbers AYA2016-76219-P and MEC-AYA2015-53753-P, respectively.

Author information


  1. Instituto de Astrofísica de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

    • F. S Tabatabaei
    • , P. Minguez
    • , M. A. Prieto
    •  & J. A. Fernández-Ontiveros
  2. Departamento de Astrofísica, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

    • F. S Tabatabaei
    • , P. Minguez
    • , M. A. Prieto
    •  & J. A. Fernández-Ontiveros


  1. Search for F. S Tabatabaei in:

  2. Search for P. Minguez in:

  3. Search for M. A. Prieto in:

  4. Search for J. A. Fernández-Ontiveros in:


F.S.T. conceived and designed the project, provided the thermal and non-thermal separation code, analysed the data and wrote the paper. P.M. co-analysed some of the data and contributed to the materials. M.A.P. helped to set up the project. J.A.F.-O. obtained the continuum-subtracted Hα and Paα maps and produced Fig. 1. M.A.P. and J.A.F.-O. commented on the paper and were involved in the science discussion.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to F. S Tabatabaei.

About this article

Publication history




Issue Date


Further reading