Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

An Author Correction to this article was published on 27 March 2018

This article has been updated

Abstract

The Crab pulsar is a typical example of a young, rapidly spinning, strongly magnetized neutron star that generates broadband electromagnetic radiation by accelerating charged particles to near light speeds in its magnetosphere1. Details of this emission process so far remain poorly understood. Measurement of polarization in X-rays, particularly as a function of pulse phase, is thought to be a key element necessary to unravel the mystery of pulsar radiation2,3,4. Such measurements are extremely difficult, however: to date, Crab is the only pulsar to have been detected in polarized X-rays5,6,7,8 and the measurements have not been sensitive enough to adequately reveal the variation of polarization characteristics across the pulse7. Here, we present the most sensitive measurement to date of polarized hard X-ray emission from the Crab pulsar and nebula in the 100–380 keV band, using the Cadmium–Zinc–Telluride Imager9 instrument on-board the Indian astronomy satellite AstroSat10. We confirm with high significance the earlier indication6,7 of a strongly polarized off-pulse emission. However, we also find a variation in polarization properties within the off-pulse region. In addition, our data hint at a swing of the polarization angle across the pulse peaks. This behaviour cannot be fully explained by the existing theoretical models of high-energy emission from pulsars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Polarization fraction and angle of the Crab nebula and pulsar.
Fig. 2: Phase-resolved polarization fraction and polarization angle of Crab.
Fig. 3: Polarization angle swing across both pulses.

Change history

  • 27 March 2018

    In the Supplementary Information file originally published for this Letter, in Supplementary Fig. 7 the error bars for the polarization fraction were provided as confidence intervals but instead should have been Bayesian credibility intervals. This has been corrected and does not alter the conclusions of the Letter in any way.

References

  1. 1.

    Lyne, A. & Graham-Smith, F. Pulsar Astronomy (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  2. 2.

    Krawczynski, H. et al. Scientific prospects for hard X-ray polarimetry. Astropart. Phys. 34, 550–567 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Dyks, J., Harding, A. K. & Rudak, B. Relativistic effects and polarisation in three high-energy pulsar models. Astrophys. J. 606, 1125–1142 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Petri, J. Phase-resolved polarisation properties of the pulsar striped wind synchrotron emission. Mon. Not. R. Astron. Soc. 434, 2636–2644 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Weisskopf, M. C., Silver, E. H., Kestenbaum, H. L., Long, K. S. & Novick, R. A precision measurement of the X-ray polarisation of the Crab nebula without pulsar contamination. Astrophys. J. Lett. 220, L117–L121 (1978).

    ADS  Article  Google Scholar 

  6. 6.

    Dean, A. J. et al. Polarised gamma-ray emission from the Crab. Science 321, 1183–1185 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Forot, M., Laurent, P., Grenier, I. A., Gouiffes, C. & Lebrun, F. Polarisation of the Crab pulsar and nebula as observed by the INTEGRAL/IBIS telescope. Astrophys. J. Lett. 688, L29–L32 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Chauvin, M. et al. Observation of polarised hard X-ray emission from the Crab by the PoGOLite Pathfinder. Mon. Not. R. Astron. Soc. 456, L84–L88 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Bhalerao, V. et al. The Cadmium Zinc Telluride Imager on AstroSat. J. Astrophys. Astron. 38, 31 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Singh, K. P. et al. ASTROSAT mission. Proc. SPIE 9144, 91441S (2014).

    Article  Google Scholar 

  11. 11.

    Vadawale, S. V. et al. Hard X-ray polarimetry with Astrosat-CZTI. Astron. Astrophys. 578, A73 (2015).

    Article  Google Scholar 

  12. 12.

    Kuiper, L. et al. The Crab pulsar in the 0.75–30 MeV range as seen by CGRO COMPTEL. A coherent high-energy picture from soft X-rays up to high-energy gamma-rays. Astron. Astrophys. 378, 918–935 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    Slowikowska, A. et al. High-time-resolution measurements of the polarization of the Crab pulsar at 1.38 GHz. Astrophys. J. 799, 70 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Slowikowska, A., Kanbach, G., Kramer, M. & Stefanescu, A. Optical polarisation of the Crab pulsar: precision measurements and comparison to the radio emission. Mon. Not. R. Astron. Soc. 397, 103–123 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Maier, D., Tenzer, C. & Santangelo, A. Point and interval estimation on the degree and the angle of polarization: a Bayesian approach. Publ. Astron. Soc. Pac. 126, 459–468 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Lyutikov, M., Komissarov, S. S. & Porth, O. The inner knot of the Crab nebula. Mon. Not. R. Astron. Soc. 456, 286–299 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Moran, P. et al. A recent change in the optical and γ-ray polarization of the Crab nebula and pulsar. Mon. Not. R. Astron. Soc. 456, 2974–2981 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Ruderman, M. A. & Sutherland, P. G. Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    ADS  Article  Google Scholar 

  19. 19.

    Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar caps—structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979).

    ADS  Article  Google Scholar 

  20. 20.

    Romani, R. W. & Yadigaroglu, I.-A. Gamma-ray pulsars: emission zones and viewing geometries. Astrophys. J. 438, 314–321 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    Takata, J., Chang, H.-K. & Cheng, K. S. Polarisation of high-energy emission from the Crab pulsar. Astrophys. J. 656, 1044–1055 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Dyks, J. & Rudak, B. Two-pole caustic model for high-energy light curves of pulsars. Astrophys. J. 598, 1201–1206 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Kirk, J. G., Skjæraasen, O. & Gallant, Y. A. Pulsed radiation from neutron starwinds. Astron. Astrophys. 388, L29–L32 (2002).

    ADS  Article  Google Scholar 

  24. 24.

    Cerutti, B., Mortier, J. & Philippov, A. A. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars. Mon. Not. R. Astron. Soc. 463, L89–L93 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Bai, X. & Spitkovsky, A. Modeling of gamma-ray pulsar light curves using the force-free magnetic field. Astrophys. J. 715, 1282–1301 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Basu, R., Athreya, R. & Mitra, D. Detection of off-pulse emission from PSR B0525+21 and PSR B2045-16. Astrophys. J. 728, 157–166 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Lei, F., Dean, A. J. & Hills, G. L. Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309–388 (1997).

    ADS  Article  Google Scholar 

  28. 28.

    Elsner, R. F., O’Dell, S. L. & Weisskopf, M. C. Measuring x-ray polarization in the presence of systematic effects: known background. Proc. SPIE 8443, 84434N (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Krawczynski, H. Analysis of the data from Compton X-ray polarimeters which measure the azimuthal and polar scattering angles. Astropart. Phys. 34, 784–788 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Chattopadhyay, T., Vadawale, S. V., Rao, A. R., Sreekumar, S. & Bhattacharya, D. Prospects of hard X-ray polarimetry with Astrosat-CZTI. Exp. Astron. 37, 555–577 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Chattopadhyay, T. et al. Prompt emission polarimetry of gamma ray bursts with ASTROSAT CZT-Imager. Preprint at https://arxiv.org/abs/1707.06595 (2017).

  32. 32.

    Vadawale, S. V. et al. In orbit performance of Astrosat CZTI. Proc. SPIE 9905, 99051G (2016).

    Google Scholar 

  33. 33.

    Agostinelli, S. et al. Geant4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This publication uses data from the AstroSat mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC). CZT-Imager is built by a consortium of institutes across India, including the Tata Institute of Fundamental Research (TIFR), Mumbai, the Vikram Sarabhai Space Centre, Thiruvananthapuram, ISRO Satellite Centre (ISAC), Bengaluru, Inter University Centre for Astronomy and Astrophysics, Pune, Physical Research Laboratory, Ahmedabad, Space Application Centre, Ahmedabad. Contributions from the vast technical team from all these institutes are gratefully acknowledged. Specifically, we would like to thank M. K. Hingar, A. P. K. Kutty, M. H. Patil, S. Sinha and Y. K. Arora (TIFR) for the CZT-Imager hardware fabrication; and K. S. Sarma, K. H. Navalgund, R. Pandiyan and K. Subbarao (ISAC) for project management and mission operation. The continued support from M. Annadurai and A. S. Kirankumar is gratefully acknowledged. This publication uses contemporaneous radio observations with the Ooty Radio telescope (ORT) and the Giant Metrewave Radio Telescope (GMRT), for which we thank P. K. Manoharan and M. A. Krishnakumar at ORT, and the GMRT staff, respectively. The GMRT and the ORT are operated by the National Centre for Radio Astrophysics of the TIFR. B.C.J. acknowledges support from DST-SERB grant EMR/2015/000515.

Author information

Affiliations

Authors

Contributions

S.V.V., T.C. and N.P.S.M. performed the polarization analysis and simulations. A.R.R., D.B., S.Sreekumar and S.V.V. developed the CZTI instrument. D.B., A.V. and N.P.S.M. produced the data pipeline. G.C.D. and R.M. helped construct the Crab pulse profile and provided critical input. S.Sreekumar, E.S., P.P. and P.V. provided the on-board software, including a crucial software patch. S.Seetha supported and managed the observation scheduling. V.B.B. provided the ground calibration and formatted the figures. B.P. provided important input, highlighting the importance of phase-resolved analysis. B.C.J. and A.B. carried out contemporaneous radio observations and provided the absolute pulse-phase references. All authors commented on the manuscript.

Corresponding author

Correspondence to S. V. Vadawale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41550-018-0425-0.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary References

Supplementary Video 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vadawale, S.V., Chattopadhyay, T., Mithun, N.P.S. et al. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nat Astron 2, 50–55 (2018). https://doi.org/10.1038/s41550-017-0293-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing