No hot and luminous progenitor for Tycho’s supernova

Abstract

Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of ~10–100 pc for ~100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant (~3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10−8M  yr−1 (recurrent novae; M is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hydrogen ionization fraction as a function of radial distance from the progenitor of SN 1572, for putative objects with different effective temperatures.
Fig. 2: Upper limits on the typical luminosity of the progenitor of SN 1572 during the past 100,000 yr.

Change history

  • 20 October 2017

    In the version of this Article originally published the variable in equation (1) representing neutral hydrogen was incorrect and should have read H0. This has been corrected in all versions of the Article.

References

  1. 1.

    Ruiz-Lapuente, P. Tycho Brahe’s supernova: light from centuries past. Astrophys. J. 612, 357–363 (2004).

    ADS  Article  Google Scholar 

  2. 2.

    Badenes, C., Borkowski, K. J., Hughes, J. P., Hwang, U. & Bravo, E. Constraints on the physics of type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys. J. 645, 1373–1391 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Krause, O. et al. Tycho Brahe’s 1572 supernova as a standard type Ia as revealed by its light echo spectrum. Nature 456, 617–619 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Whelan, J. & Iben, I. Jr Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973).

    ADS  Article  Google Scholar 

  5. 5.

    Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).

    ADS  Article  Google Scholar 

  6. 6.

    Ruiz-Lapuente, P. et al. The binary progenitor of Tycho Brahe’s 1572 supernova. Nature 431, 1069–1072 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    Zhou, P. et al. Expanding molecular bubble surrounding Tycho’s supernova remnant (SN 1572) observed with the IRAM 30 m Telescope: evidence for a single-degenerate progenitor. Astrophys. J. 826, 34 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Kerzendorf, W. E. et al. Subaru high-resolution spectroscopy of Star G in the Tycho supernova remnant. Astrophys. J. 701, 1665–1672 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astr. 52, 107–170 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Bedin, L. R. et al. Improved Hubble Space Telescope proper motions for Tycho-G and other stars in the remnant of Tycho’s supernova 1572. Mon. Not. R. Astron. Soc. 439, 354–371 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Williams, B. J. et al. An X-ray and radio study of the varying expansion velocities in Tycho’s supernova remnant. Astrophys. J. 823, L32 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    González Hernández, J. I. et al. The chemical abundances of Tycho G in supernova remnant 1572. Astrophys. J. 691, 1–15 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Kerzendorf, W. E. et al. A high-resolution spectroscopic search for the remaining donor for Tycho’s supernova. Astrophys. J. 774, 99 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Nielsen, M. T. B., Voss, R. & Nelemans, G. Upper limits on bolometric luminosities of 10 type Ia supernova progenitors from Chandra observations. Mon. Not. R. Astron. Soc. 426, 2668–2676 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Graham, M. L. et al. Constraining the progenitor companion of the nearby type Ia SN 2011fe with a nebular spectrum at +981 d. Mon. Not. R. Astron. Soc. 454, 1948–1957 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Olling, R. P. et al. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521, 332–335 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Gilfanov, M. & Bogdán, Á. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate. Nature 463, 924–925 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Di Stefano, R. The progenitors of type Ia supernovae. I. Are they supersoft sources? Astrophys. J. 712, 728–733 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Woods, T. E. & Gilfanov, M. He II recombination lines as a test of the nature of SN Ia progenitors in elliptical galaxies. Mon. Not. R. Astron. Soc. 432, 1640–1650 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Johansson, J. et al. Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization. Mon. Not. R. Astron. Soc. 461, 4505–4516 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Rappaport, S., Chiang, E., Kallman, T. & Malina, R. Ionization nebulae surrounding supersoft X-ray sources. Astrophys. J. 431, 237–246 (1994).

    ADS  Article  Google Scholar 

  22. 22.

    Woods, T. E. & Gilfanov, M. Where are all of the nebulae ionized by supersoft X-ray sources? Mon. Not. R. Astron. Soc. 455, 1770–1781 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Prialnik, D. & Kovetz, A. An extended grid of multicycle nova evolution models. Astrophys. J. 445, 789–810 (1995).

    ADS  Article  Google Scholar 

  24. 24.

    Nomoto, K., Saio, H., Kato, M. & Hachisu, I. Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of type Ia supernovae. Astrophys. J. 663, 1269–1276 (2007).

    ADS  Article  Google Scholar 

  25. 25.

    Wolf, W. M., Bildsten, L., Brooks, J. & Paxton, B. Hydrogen burning on accreting white dwarfs: stability, recurrent novae, and the post-nova supersoft phase. Astrophys. J. 777, 136 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Thoroughgood, T. D., Dhillon, V. S., Littlefair, S. P., Marsh, T. R. & Smith, D. A. The mass of the white dwarf in the recurrent nova U Scorpii. Mon. Not. R. Astron. Soc. 327, 1323–1333 (2001).

    ADS  Article  Google Scholar 

  27. 27.

    Darnley, M. J. et al. A remarkable recurrent nova in M31: discovery and optical/UV observations of the predicted 2014 eruption. Astron. Astrophys. 580, A45 (2015).

    Article  Google Scholar 

  28. 28.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  29. 29.

    Bisnovatyi-Kogan, G. S. & Syunyaev, R. A. The evolution of massive stars and Strömgren zones. Sov. Astron. 47, 441–442 (1970).

    Google Scholar 

  30. 30.

    Graur, O., Maoz, D. & Shara, M. M. Progenitor constraints on the type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope He II narrow-band observations. Mon. Not. R. Astron. Soc. 442, L28–L32 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Chevalier, R. A., Kirshner, R. P. & Raymond, J. C. The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980).

    ADS  Article  Google Scholar 

  32. 32.

    Ghavamian, P., Raymond, J., Hartigan, P. & Blair, W. P. Evidence for shock precursors in Tycho’s supernova remnant. Astrophys. J. 535, 266–274 (2000).

    ADS  Article  Google Scholar 

  33. 33.

    Ghavamian, P., Raymond, J., Smith, R. C. & Hartigan, P. Balmer-dominated spectra of nonradiative shocks in the Cygnus Loop, RCW 86, and Tycho supernova remnants. Astrophys. J. 547, 995–1009 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Chevalier, R. A. & Raymond, J. C. Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. 225, L27–L30 (1978).

    ADS  Article  Google Scholar 

  35. 35.

    Ghavamian, P., Rakowski, C. E., Hughes, J. P. & Williams, T. B. The physics of supernova blast waves. I. Kinematics of DEM L71 in the Large Magellanic Cloud. Astrophys. J. 590, 833–845 (2003).

    ADS  Article  Google Scholar 

  36. 36.

    Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev 20, 49 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Yamaguchi, H. et al. Discriminating the progenitor type of supernova remnants with iron K-shell emission. Astrophys. J. 785, L27 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Badenes, C., Hughes, J. P., Bravo, E. & Langer, N. Are the models for type Ia supernova progenitors consistent with the properties of supernova remnants? Astrophys. J. 662, 472–486 (2007).

    ADS  Article  Google Scholar 

  39. 39.

    Patnaude, D. & Badenes, C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1–17 (Springer International Publishing, Cham, 2017).

  40. 40.

    Williams, B. J. et al. Azimuthal density variations around the rim of Tycho’s supernova remnant. Astrophys. J. 770, 129 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Chiang, E. & Rappaport, S. Time-dependent calculations of ionization nebulae surrounding supersoft X-ray sources. Astrophys. J. 469, 255 (1996).

    ADS  Article  Google Scholar 

  42. 42.

    Greiner, J. Catalog of supersoft X-ray sources. New Astron. 5, 137–141 (2000).

    ADS  Article  Google Scholar 

  43. 43.

    Hachisu, I., Kato, M. & Nomoto, K. A new model for progenitor systems of type IA supernovae. Astrophys. J. 470, L97 (1996).

    ADS  Article  Google Scholar 

  44. 44.

    Nielsen, M. T. B. & Gilfanov, M. Attenuation of supersoft X-ray sources by circumstellar material. Mon. Not. R. Astron. Soc. 453, 2927–2936 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Cumming, R. J., Lundqvist, P., Smith, L. J., Pettini, M. & King, D. L. Circumstellar Hα from SN 1994D and future type IA supernovae: an observational test of progenitor models. Mon. Not. R. Astron. Soc. 283, 1355–1360 (1996).

    ADS  Article  Google Scholar 

  46. 46.

    Pérez-Torres, M. A. et al. Constraints on the progenitor system and the environs of SN 2014J from deep radio observations. Astrophys. J. 792, 38 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Chomiuk, L. et al. A deep search for prompt radio emission from thermonuclear supernovae with the Very Large Array. Astrophys. J. 821, 119 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Margutti, R. et al. Inverse Compton X-ray emission from supernovae with compact progenitors: application to SN2011fe. Astrophys. J. 751, 134 (2012).

    ADS  Article  Google Scholar 

  49. 49.

    Margutti, R. et al. No X-rays from the very nearby type Ia SN 2014J: constraints on Its environment. Astrophys. J. 790, 52 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Kundu, E., Lundqvist, P., Pérez-Torres, M. A., Herrero-Illana, R. & Alberdi, A. Constraining magnetic field amplification in SN shocks using radio observations of SNe 2011fe and 2014J. Astrophys. J. 842, 17 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Yaron, O., Prialnik, D., Shara, M. M. & Kovetz, A. An extended grid of nova models. II. The parameter space of nova outbursts. Astrophys. J. 623, 398–410 (2005).

    ADS  Article  Google Scholar 

  52. 52.

    Denissenkov, P. A. et al. i-process nucleosynthesis and mass retention efficiency in He-shell flash evolution of rapidly accreting white dwarfs. Astrophys. J. 834, L10 (2017).

    ADS  Article  Google Scholar 

  53. 53.

    Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. 770, L8 (2013).

    ADS  Article  Google Scholar 

  54. 54.

    Bulla, M. et al. Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs: polarization signatures. Mon. Not. R. Astron. Soc. 455, 1060–1070 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Williams, B. J. et al. The three-dimensional expansion of the ejecta from Tycho’s supernova remnant. Astrophys. J. 842, 28 (2017).

    ADS  Article  Google Scholar 

  56. 56.

    Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Astrophys. J. 748, 35 (2012).

    ADS  Article  Google Scholar 

  57. 57.

    Schwab, J., Quataert, E. & Kasen, D. The evolution and fate of super-Chandrasekhar mass white dwarf merger remnants. Mon. Not. R. Astron. Soc. 463, 3461–3475 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Justham, S. Single-degenerate type Ia supernovae without hydrogen contamination. Astrophys. J. 730, L34 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Di Stefano, R., Voss, R. & Claeys, J. S. W. Spin-up/spin-down models for type Ia supernovae. Astrophys. J. 738, L1 (2011).

    ADS  Article  Google Scholar 

  60. 60.

    Benvenuto, O. G., Panei, J. A., Nomoto, K., Kitamura, H. & Hachisu, I. Final evolution and delayed explosions of spinning white dwarfs in single degenerate models for type Ia supernovae. Astrophys. J. 809, L6 (2015).

    ADS  Article  Google Scholar 

  61. 61.

    Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. Astron. Astr. 49, 137–163 (2013).

    ADS  Google Scholar 

  62. 62.

    Badnell, N. R. et al. Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology. Astron. Astrophys. 406, 1151–1165 (2003).

    ADS  Article  Google Scholar 

  63. 63.

    Badnell, N. R. Radiative recombination data for modeling dynamic finite-density plasmas. Astrophys. J. Suppl. Ser. 167, 334–342 (2006).

    ADS  Article  Google Scholar 

  64. 64.

    Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125 149–173 (1997).

    ADS  Article  Google Scholar 

  65. 65.

    Landi, E., Del Zanna, G., Young, P. R., Dere, K. P. & Mason, H. E. CHIANTI—an atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 744, 99 (2012).

    ADS  Article  Google Scholar 

  66. 66.

    Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998).

    ADS  Article  Google Scholar 

  67. 67.

    Allende Prieto, C., Lambert, D. L. & Asplund, M. The forbidden abundance of oxygen in the Sun. Astrophys. J. 556, L63–L66 (2001).

    ADS  Article  Google Scholar 

  68. 68.

    Allende Prieto, C., Lambert, D. L. & Asplund, M. A reappraisal of the solar photospheric C/O ratio. Astrophys. J. 573, L137–L140 (2002).

    ADS  Article  Google Scholar 

  69. 69.

    Holweger, H. Photospheric abundances: problems, updates, implications. In Solar and Galactic Composition (ed. Wimmer-Schweingruber, R. F.) 23–30 (AIP Conf. Proc. Vol. 598, American Institute of Physics, Melville, 2001).

  70. 70.

    Woods, T. E. & Gilfanov, M. Emission-line diagnostics to constrain high-temperature populations in early-type galaxies. Mon. Not. R. Astron. Soc. 439, 2351–2363 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Zimmerman, E. R., Narayan, R., McClintock, J. E. & Miller, J. M. Multitemperature blackbody spectra of thin accretion disks with and without a zero-torque inner boundary condition. Astrophys. J. 618, 832–844 (2005).

    ADS  Article  Google Scholar 

  72. 72.

    Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17–20 (ASP Conf. Ser. Vol. 101, Astronomical Society of the Pacific, San Francisco, 1996).

  73. 73.

    Panei, J. A., Althaus, L. G. & Benvenuto, O. G. Mass-radius relations for white dwarf stars of different internal compositions. Astron. Astrophys. 353, 970–977 (2000).

    ADS  Google Scholar 

  74. 74.

    Starrfield, S. et al. Surface hydrogen-burning modeling of supersoft X-ray binaries: are they type Ia supernova progenitors? Astrophys. J. 612, L53–L56 (2004).

    ADS  Article  Google Scholar 

  75. 75.

    Ness, J.-U. et al. Obscuration effects in super-soft-source X-ray spectra. Astron. Astrophys. 559, A50 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The work of P.G. was supported by grants HST-GO-12545.08 and HST-GO-14359.011. C.B. acknowledges support from grants NASA ADAP NNX15AM03G S01 and NSF/AST-1412980. M.G. acknowledges partial support by Russian Scientific Foundation (RNF) project 14-22-00271.

Author information

Affiliations

Authors

Contributions

T.E.W. led the cloudy simulations and analysis of their results, and was the primary author of the main text and methods. P.G. wrote the supplementary section of the paper, and wrote portions of the main manuscript summarizing the constraints on preshock conditions from the Balmer-dominated shocks. C.B. first suggested this project during the conference ‘Supernova Remnants: An Odyssey In Space After Stellar Death’ in Crete, and contributed to the text and the interpretation of the analysis. M.G. contributed to defining the simulations setup, analysis and interpretation of cloudy results and to the writing of the manuscript.

Corresponding author

Correspondence to T. E. Woods.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41550-017-0302-2.

Electronic supplementary material

Supplementary Information

Supplementary text, supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woods, T.E., Ghavamian, P., Badenes, C. et al. No hot and luminous progenitor for Tycho’s supernova. Nat Astron 1, 800–804 (2017). https://doi.org/10.1038/s41550-017-0263-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing