Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polarization due to rotational distortion in the bright star Regulus

Abstract

Polarization in stars was first predicted by Chandrasekhar1, who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry was broken, for example, by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins2 modelled another way of breaking the symmetry and producing net polarization—the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 ppm at a wavelength of 741 nm to –22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars, we find that Regulus is rotating at \(96.{5}_{-0.8}^{+0.6} \% \) of its critical angular velocity for break-up, and has an inclination greater than 76.5°. The rotation axis of the star is at a position angle of 79.5 ± 0.7°. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus3. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments4 and the course of their evolution5.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Polarization observations of Regulus on a Q–U diagram.
Fig. 2: Example of polarization modelling of Regulus.
Fig. 3: Observations of Regulus versus model results.
Fig. 4: Results of model fitting.

References

  1. 1.

    Chandrasekhar, S. On the radiative equilibrium of a stellar atmosphere. X. Astrophys. J. 103, 351–370 (1946).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Harrington, J. P. & Collins, G. W. Intrinsic polarization of rapidly rotating early-type stars. Astrophys. J. 151, 1051–1056 (1968).

    ADS  Article  Google Scholar 

  3. 3.

    Che, X. et al. Colder and hotter: interferometric imaging of β Cassiopeiae and α Leonis. Astrophys. J. 732, 68 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Cranmer, S. R. & Owocki, S. P. The effect of oblateness and gravity darkening on the radiation driving winds from rapidly rotating B stars. Astrophys. J. 440, 308–321 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    McAlister, H. A. et al. First results from the CHARA array. I. An interferometric and spectroscopic study of the fast rotator α Leonis (Regulus). Astrophys. J. 628, 439–452 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Hiltner, W. A. Polarization of radiation from distant stars by the interstellar medium. Nature 163, 283 (1949).

    ADS  Article  Google Scholar 

  7. 7.

    Hall, J. S. Observations of the polarized light from stars. Science 109, 166–167 (1949).

    ADS  Article  Google Scholar 

  8. 8.

    Kemp, J. C., Henson, G. D., Barbour, M. S., Kraus, D. J. & Collins, G. W. Discovery of eclipse polarization in Algol. Astrophys. J. Lett. 273, L85–L88 (1983).

    ADS  Article  Google Scholar 

  9. 9.

    Collins, G. W. II Intrinsic polarization in nongray atmospheres. Astrophys. J. 159, 583–591 (1970).

    ADS  Article  Google Scholar 

  10. 10.

    Sonneborn, G. in Be Stars (eds Jaschek M. & Groth H.-G.) 493–496 (Reidel, Dordrecht, 1982).

  11. 11.

    Coyne, G. V. & Kruszewski, A. Wavelength dependence of polarization. XVII. Be-type stars. Astron. J. 74, 528–532 (1969).

    ADS  Article  Google Scholar 

  12. 12.

    Clarke, D. Stellar Polarimetry (Wiley-VCH, Weinheim, 2010).

  13. 13.

    Porter, J. M. & Rivinius, T. Classical Be stars. Publ. Astron. Soc. Pacific 115, 1153–1170 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    Bailey, J. et al. A high-sensitivity polarimeter using a ferro-electric liquid crystal modulator. Mon. Not. R. Astron. Soc. 449, 3064–3073 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Hough, J. H. et al. PlanetPol: a very high sensitivity polarimeter. Publ. Astron. Soc. Pacific 118, 1302–1318 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Wiktorowicz, S. J. & Matthews, K. A high-precision optical polarimeter to measure inclinations of high-mass X-ray binaries. Publ. Astron. Soc. Pacific 120, 1282–1297 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Bailey, J., Lucas, P. W. & Hough, J. H. The linear polarization of nearby bright stars measured at the parts per million level. Mon. Not. R. Astron. Soc. 405, 2570–2578 (2010).

    ADS  Google Scholar 

  18. 18.

    Harrington, J. P. in Polarimetry: From the Sun to Stars and Stellar Environments. Proc. IAU 10, 395–400 (2015).

  19. 19.

    Espinosa Lara, F. & Rieutord, M. Gravity darkening in rotating stars. Astron. Astrophys. 533, A43 (2011).

    ADS  Article  MATH  Google Scholar 

  20. 20.

    von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc 84, 665–683 (1924).

    ADS  Article  Google Scholar 

  21. 21.

    Kurucz, R. ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13 (1993).

  22. 22.

    Hubney, I., Stefl, S. & Harmanec, P. How strong is the evidence of superionization and large mass outflows in B/Be stars? Bull. Astron. Inst. Czech. 36, 214–230 (1985).

    ADS  Google Scholar 

  23. 23.

    Spurr, R. J. D. VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer scattering media. J. Quant. Spectrosc. Radiat. Transf. 102, 316–342 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    Howarth, I. D. & Smith, K. C. Rotational mixing in early-type main-sequence stars. Mon. Not. R. Astron. Soc. 327, 353–368 (2001).

    ADS  Article  Google Scholar 

  25. 25.

    Öhman, Y. On the possibility of tracing polarization effects in the rotational profiles of early-type stars. Astrophys. J. 104, 460–462 (1946).

    ADS  Article  Google Scholar 

  26. 26.

    Cotton, D. V. et al. The linear polarization of Southern bright stars measured at the parts-per-million level. Mon. Not. R. Astron. Soc. 455, 1607–1628 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Marshall, J. P. et al. Polarization measurements of hot dust stars and the local interstellar medium. Astrophys. J. 825, 124 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Cotton, D. V. et al. The intrinsic and interstellar broad-band linear polarization of nearby FGK dwarfs. Mon. Not. R. Astron. Soc. 467, 873–897 (2017).

    ADS  Google Scholar 

  29. 29.

    Thureau, N. D. et al. An unbiased study of debris discs around A-type stars with Herschel. Mon. Not. R. Astron. Soc. 445, 2558–2573 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Frisch, P. C. et al. Following the interstellar magnetic field from the heliosphere into space with polarized starlight. J. Phys. Conf. Ser. 767, 012010 (2016).

  31. 31.

    van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    ADS  Article  Google Scholar 

  32. 32.

    Serkowski, K., Mathewson, D. S. & Ford, V. L. Wavelength dependence of interstellar polarization and ratio of total to selective extinction. Astrophys. J. 196, 261–290 (1975).

    ADS  Article  Google Scholar 

  33. 33.

    Wilking, B. A., Lebofsky, M. J. & Rieke, G. H. The wavelength dependence of interstellar linear polarization: stars with extreme values of λ max. Astron. J. 87, 695–697 (1982).

    ADS  Article  Google Scholar 

  34. 34.

    Hiltner, W. A. Interstellar polarization. Vistas Astron 2, 1080–1091 (1956).

    ADS  Article  Google Scholar 

  35. 35.

    Slettebak, A., Collins, G. W. II, Parkinson, T. D., Boyce, P. B. & White, N. M. A system of standard stars for rotational velocity determinations. Astrophys. J. Supp. Ser. 29, 137–159 (1975).

    ADS  Article  Google Scholar 

  36. 36.

    Zorec, J. & Royer, F. Rotational velocities of A-type stars. IV. Evolution of rotational velocities. Astron. Astrophys. 537, A120 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B. & Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. Proc. SPIE 4008, 534–545 (2000).

    ADS  Article  Google Scholar 

  38. 38.

    Pepe, F. et al. HARPS: a new high-resolution spectrograph for the search of extrasolar planets. Proc. SPIE 4008, 582–592 (2000).

    ADS  Article  Google Scholar 

  39. 39.

    Kaufer, A. & Pasquini, L. FEROS: the new fiber-linked echelle spectrograph for the ESO 1.52-m telescope. Proc. SPIE 3355, 844–854 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Supp. Ser 119, 373–390 (1996).

    ADS  Article  Google Scholar 

  41. 41.

    Gavrilović, N. & Jankov, S. in Active OB-Stars: Laboratories for Stellar and Circumstellar Physics. ASP Conf. Ser. 425–427 (Astronomical Society of the Pacific, 2007).

  42. 42.

    Townsend, R. H. D., Owocki, S. P. & Howarth, I. D. Be-star rotation: how close to critical? Mon. Not. R. Astron. Soc 350, 189–195 (2004).

    ADS  Article  Google Scholar 

  43. 43.

    Gray, D. F. The Observation and Analysis of Stellar Photospheres 3rd edn (Cambridge Univ. Press, Cambridge, 2005).

  44. 44.

    Howarth, I. D. & Morello, G. Rapid rotators revisited: absolute dimensions of KOI-13. Mon. Not. R. Astron. Soc 470, 932–939 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Howarth, I. D. New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC, and SMC abundances. Mon. Not. R. Astron. Soc. 413, 1515–1523 (2011).

    ADS  Article  Google Scholar 

  46. 46.

    Castelli, F. & Kurucz, R. New grids of ATLAS9 model atmospheres. Preprint at http://arXiv.org/abs/astroph/0405087 (2004).

  47. 47.

    Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev 85, 161–174 (1998).

    ADS  Article  Google Scholar 

  48. 48.

    Hubeny, I. & Lanz, T. Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Australian Research Council through Discovery Project grants DP140100121 and DP160103231. We thank D. Opitz, J. Sturges and the staff at the AAT for their assistance in making the HIPPI observations. We thank R. Spurr of RT Solutions for providing the VLIDORT software.

Author information

Affiliations

Authors

Contributions

J.B., D.V.C., L.K.-C., K.B., P.W.L. and J.H.H. drafted the initial proposals to observe Regulus with HIPPI, following an extended discussion of the PlanetPol results dating back to 2010 that included I.D.H., J.H.H., J.B. and P.W.L. All authors contributed to the discussion and drafting of the final manuscript. The HIPPI observations were carried out and directed by J.B., D.V.C., L.K.-C. and K.B. In addition, the following authors made specific contributions to the work: D.V.C. contributed the initial data analysis, telescope polarization subtraction, stellar atmosphere modelling, interstellar subtraction, model comparison to data, and other calculations including the position angle calculation and the calculations related to Regulus’ companions. J.B. contributed the polarized radiative transfer modelling and verification, gravity-darkening calculations and PlanetPol bandpass model calculations and code. I.D.H. contributed rotational velocity calculations, the knowledge and calculations needed to constrain parameter space, and other miscellaneous calculations. K.B. contributed HIPPI bandpass model calculations and code, and research on Regulus’ companions. P.W.L. contributed details of the PlanetPol observations not otherwise available.

Corresponding author

Correspondence to Daniel V. Cotton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Text, Supplementary References, Supplementary Figures 1–6 and Supplementary Tables 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cotton, D.V., Bailey, J., Howarth, I.D. et al. Polarization due to rotational distortion in the bright star Regulus. Nat Astron 1, 690–696 (2017). https://doi.org/10.1038/s41550-017-0238-6

Download citation

Further reading

Search

Quick links