Too good to be true?

Abstract

Scientific discovery is often perceived as associated with a single act of genius or a moment in time that changes one's thinking and scientific discourse. Most scientists know that this perception is almost always far from reality. Scientific discovery is reached through long, persistent effort from groups of people who are willing to take risks and are not afraid to fail. Equally important is that funders of scientific research appreciate the need for such persistent effort and do not look only for easily identifiable, short-term benefits. We may occasionally recognize historic ‘moments’, but these often occur because of the less famous but equally important advances that came before, often over decades of work.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1

GMUTLU

References

  1. 1

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Abbott, B. P. et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 93, 122003 (2016).

    ADS  Article  Google Scholar 

  3. 3

    Abbott, B. P. et al. The basic physics of the binary black hole merger GW150914. Ann. Phys. 529, 1600209 (2017).

    Article  Google Scholar 

  4. 4

    Casares, J. & Jonker, P. G. Mass measurements of stellar and intermediate-mass black holes. Space Sci. Rev. 183, 223–252 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Abbott, B. P. et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Pretorius, F. Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Campanelli, M., Lousto, C. O., Marronetti, P. & Zlochower, Y. Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M. & van Meter, J. Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016).

    ADS  Article  Google Scholar 

  10. 10

    Abbott, B. P. et al. Astrophysical implications of the binary black-hole merger GW150914. Astrophys. J. Lett. 818, L22 (2016).

    ADS  Article  Google Scholar 

  11. 11

    Abadie, J. et al. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Phys. Rev. D 85, 082002 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Aasi, J. et al. Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO–Virgo data from 2009–2010. Phys. Rev. D 87, 022002 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Aasi, J. et al. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO–Virgo joint science run. Phys. Rev. D 89, 122003 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Abbott, B. P. et al. GW150914: The advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Abbott, B. P. et al. The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophys. J. Lett. 833, L1 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Abbott, B. P. et al. Supplement: The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys. J. Suppl. 227, 14 (2016).

    ADS  Article  Google Scholar 

  17. 17

    Abbott, B. P. et al. Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016).

    Google Scholar 

  18. 18

    Kalogera, V. & Baym, G. The maximum mass of a neutron star. Astrophys. J. Lett. 470, L61–L64 (1996).

    ADS  Article  Google Scholar 

  19. 19

    Abbott, B. P. et al. Upper limits on the rates of binary neutron star and neutron star-black hole mergers from Advanced LIGO's first observing run. Astrophys. J. Lett. 832, L21 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Tutukov, A. & Yungelson, L. Evolution of massive close binaries. Nauchnye Informatsii 27, 86–92 (1973).

    ADS  Google Scholar 

  21. 21

    Lipunov, V. M., Postnov, K. A. & Prokhorov, M. E. Black holes and gravitational waves: Possibilities for simultaneous detection using first-generation laser interferometers. Astron. Lett. 23, 492–497 (1997).

    ADS  Google Scholar 

  22. 22

    Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195 L51–L53 (1975).

    ADS  Article  Google Scholar 

  23. 23

    Kalogera, V. et al. The cosmic coalescence rates for double neutron star binaries. Astrophys. J. Lett. 601, L179–L182 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Dominik, M. et al. Double compact objects III: Gravitational-wave detection rates. Astrophys. J. 806, 263 (2015).

    ADS  Article  Google Scholar 

  25. 25

    Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010).

    ADS  Article  Google Scholar 

  26. 26

    de Mink, S. E. & Mandel, I. The chemically homogeneous evolutionary channel for binary black hole mergers: Rates and properties of gravitational-wave events detectable by advanced LIGO. Mon. Not. R. Astron. Soc. 460, 3545–3553 (2016).

    ADS  Article  Google Scholar 

  27. 27

    Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M. & Moriya, T. J. A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016).

    ADS  Article  Google Scholar 

  28. 28

    Mandel, I. & de Mink, S. E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 458, 2634–2647 (2016).

    ADS  Article  Google Scholar 

  29. 29

    Rodriguez, C. L., Chatterjee, S. & Rasio, F. A. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution. Phys. Rev. D 93, 084029 (2016).

    ADS  Article  Google Scholar 

  30. 30

    Belczynski, K., Holz, D. E., Bulik, T., & O'Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature 534, 512–515 (2016).

    ADS  Article  Google Scholar 

  31. 31

    Rodriguez, C. L., Haster, C.-J., Chatterjee, S., Kalogera, V. & Rasio, F. A. Dynamical formation of the GW150914 binary black hole. Astrophys. J. Lett. 824, L8 (2016).

    ADS  Article  Google Scholar 

  32. 32

    Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V. & Rasio, F. A. Illuminating black hole binary formation channels with spins in Advanced LIGO. Astrophys. J. Lett. 832, L2 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Vitale, S., Lynch, R., Sturani, R. & Graff, P. Use of gravitational waves to probe the formation channels of compact binaries. Class. Quantum Grav. 34, 03LT01 (2017).

    Article  Google Scholar 

  34. 34

    Belczynski, K. et al. The formation and gravitational-wave detection of massive stellar black hole binaries. Astrophys. J. 789, 120 (2014).

    ADS  Article  Google Scholar 

  35. 35

    10 Big Ideas for Future NSF Investments (National Science Foundation, 2016); https://www.nsf.gov/about/congress/reports/nsf_big_ideas.pdf

  36. 36

    Brillet, A. et al. Virgo Project Technical Report No. VIR-0517A-15 (1989).

  37. 37

    Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev. Relat. 19, 1A (2016).

    ADS  Article  Google Scholar 

  38. 38

    Rodriguez, C. L. et al. Basic parameter estimation of binary neutron star systems by the Advanced LIGO/Virgo network. Astrophys. J. 784, 119 (2014).

    ADS  Article  Google Scholar 

  39. 39

    Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013).

    ADS  Article  Google Scholar 

  40. 40

    Iyer, B. et al. LIGO–INDIA: Proposal for an Interferometric Gravitational-Wave Observatory (IndIGO, 2011); https://dcc.ligo.org/public/0075/M1100296/002/LIGO-India_lw-v2.pdf

  41. 41

    Abbott, B. P. et al. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys. J. Lett. 826, L13 (2016).

    ADS  Article  Google Scholar 

  42. 42

    Abbott, B. P. et al. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys. J. Suppl. 225, 8 (2016).

    ADS  Article  Google Scholar 

  43. 43

    Adrián-Martínez, S. et al. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys. Rev. D 93, L2010 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

As a long-term member of the LIGO Scientific Collaboration (LSC), the author is grateful to all LSC members for their enormous contributions that led to the LIGO discoveries.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vicky Kalogera.

Ethics declarations

Competing interests

The author declares no competing financial interests

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalogera, V. Too good to be true?. Nat Astron 1, 0112 (2017). https://doi.org/10.1038/s41550-017-0112

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing