Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The detection of Rossby-like waves on the Sun

Abstract

Rossby waves are a type of global-scale wave that develops in planetary atmospheres, driven by the planet’s rotation1. They propagate westward owing to the Coriolis force, and their characterization enables more precise forecasting of weather on Earth2,3. Despite the massive reservoir of rotational energy available in the Sun’s interior and decades of observational investigation, their solar analogue defies unambiguous identification46. Here we analyse a combined set of images obtained by the Solar TErrestrial RElations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) spacecraft between 2011 and 2013 in order to follow the evolution of small bright features, called brightpoints, which are tracers of rotationally driven large-scale convection7. We report the detection of persistent, global-scale bands of magnetized activity on the Sun that slowly meander westward in longitude and display Rossby-wave-like behaviour. These magnetized Rossby waves allow us to make direct connections between decadal-scale solar activity and that on much shorter timescales. Monitoring the properties of these waves, and the wavenumber of the disturbances that they generate, has the potential to yield a considerable improvement in forecast capability for solar activity and related space weather phenomena.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coronal BP detection at three distinct vantage points in space.
Figure 2: Illustrating the combined coverage of BPs in the solar atmosphere from three distinct vantage points.
Figure 3: Illustrating the phase and group velocities of solar Rossby waves in this sample.
Figure 4: Sample lifetimes and longitudinal distribution of BP clusters visible in hemispheric Hovmöller diagrams.

References

  1. 1

    Rossby, C. G. et al. Relation between variations in the intensity of the zonal circulation of the atmosphere and the semi-permanent centers of action. J. Mar. Res. 2, 38–55 (1939).

    Article  Google Scholar 

  2. 2

    Lorenz, E. On the existence of extended range predictability. J. Appl. Meteorol. 12, 543–546 (1973).

    ADS  Article  Google Scholar 

  3. 3

    Grazzini, F. & Vitart, F. Atmospheric predictability and Rossby wave packets. Q. J. R. Meteorol. Soc. 141, 2793–2802 (2015).

    ADS  Article  Google Scholar 

  4. 4

    Kuhn, J. R., Armstrong, J. D., Bush, R. I. & Scherrer, P. H. Rossby waves on the Sun as revealed by solar ‘hills’. Nature 405, 544–546 (2000).

    ADS  Article  Google Scholar 

  5. 5

    Zaqarashvili, T. V. et al. Long-term variation in the Sun’s activity caused by magnetic Rossby waves in the tachocline. Astrophys. J. Lett. 805, 14 (2015).

    ADS  Article  Google Scholar 

  6. 6

    McIntosh, S. W. et al. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491 (2015).

    Article  Google Scholar 

  7. 7

    McIntosh, S. W., Wang, X., Leamon, R. J. & Scherrer, P. H. Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32 (2014).

    ADS  Article  Google Scholar 

  8. 8

    McIntosh, S. W. et al. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12 (2014).

    ADS  Article  Google Scholar 

  9. 9

    McIntosh, S. W. & Gurman, J. B. Nine years of EUV bright points. Sol. Phys. 228, 285–299 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Howard, R. A. et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Hovmöller, E. The trough-and-ridge diagram. Tellus 1, 62–66 (1949).

    Google Scholar 

  13. 13

    Norton, A. A. & Gallagher, J. C. Solar-cycle characteristics examined in separate hemispheres: phase, Gnevyshev gap, and length of minimum. Sol. Phys. 261, 193–207 (2010).

    ADS  Article  Google Scholar 

  14. 14

    McIntosh, S. W. et al. Hemispheric asymmetries of solar photospheric magnetism: radiative, particulate, and heliospheric impacts. Astrophys. J. 765, 146 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Hathaway, D. H., Upton, L. & Colegrove, O. Giant convection cells found on the Sun. Science 342, 1217–1219 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Dikpati, M. & Gilman, P. A. A shallow-water theory for the Sun’s active longitudes. Astrophys. J. 635, L193–L196 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Zaqarashvili, T. V., Carbonell, M., Oliver, R. & Ballester, J. L. Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709, 749–758 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Klimachkova, D. A. & Petrosyan, A. S. Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma. J. Exp. Theor. Phys. 122, 832–848 (2016).

    ADS  Article  Google Scholar 

  19. 19

    Hale, G. E. On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315–343 (1908).

    ADS  Article  Google Scholar 

  20. 20

    Tomczyk, S. & McIntosh, S. W. Time–distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Dickinson, R. E. Rossby waves — long period oscillations of oceans and atmospheres. Annu. Rev. Fluid. Mech. 10, 159–195 (1978).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22

    Ulrich, R. K. Very long lived wave patterns detected in the solar surface velocity signal. Astrophys. J. 560, 466–475 (2001).

    ADS  Article  Google Scholar 

  23. 23

    Howard, R. A. & Labonte, B. J. The Sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, 33–36 (1980).

    ADS  Article  Google Scholar 

  24. 24

    Wilson, P. R. et al. The extended solar activity cycle. Nature 333, 748–750 (1998).

    ADS  Article  Google Scholar 

  25. 25

    Glatt, I. et al. Utility of Hovmöller diagrams to diagnose Rossby wave trains. Tellus A 63, 991–1006 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    Usoskin, I. G., Berdyugina, S. V., Moss, D. & Sokoloff, D. D. Long-term persistence of solar active longitudes and its implications for the solar dynamo theory. Adv. Space Res. 40, 951–958 (2007).

    ADS  Article  Google Scholar 

  27. 27

    Rieger, E. et al. A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623–625 (1984).

    ADS  Article  Google Scholar 

  28. 28

    Bumba, V. & Howard, R. A. Study of the development of active regions on the Sun. Astrophys. J. 141, 1492–1501 (1965).

    ADS  Article  Google Scholar 

  29. 29

    Carrington, R. C. On the evidence which the observed motions of the solar spots offer for the existence of an atmosphere surrounding the Sun. Mon. Not. R. Astron. Soc. 18, 169–177 (1858).

    ADS  Article  Google Scholar 

  30. 30

    Castenmiller, M. J. M., Zwaan, C. & van der Zalm, E. B. J. Sunspot nests: manifestations of sequences in magnetic activity. Sol. Phys. 105, 237–255 (1986).

    ADS  Article  Google Scholar 

  31. 31

    Brouwer, M. P. & Zwaan, C. Sunspot nests as traced by a cluster analysis. Sol. Phys. 129, 221–246 (1990).

    ADS  Article  Google Scholar 

  32. 32

    Gurgenashvili, E. et al. Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826, 55 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Schrijver, C. J. et al. Understanding space weather to shield society: a global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55, 2745–2807 (2015).

    ADS  Article  Google Scholar 

  34. 34

    Wexler, H. TIROS experiment results. Space Sci. Rev. 1, 7–27 (1962).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation and the compilation of feature databases used was supported by NASA grant NNX08AU30G. W.J.C. and M.P.M. were supported by NSF REU grant 1157020 to the University of Colorado.

Author information

Affiliations

Authors

Contributions

S.W.M. contributed to data collection, data reduction, initial data analysis, manuscript writing and presentation. W.J.C. and M.P.M. contributed to data analysis and concatenation, code development and manuscript editing. R.J.L. contributed to data analysis, data interpretation and manuscript editing.

Corresponding author

Correspondence to Scott W. McIntosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Videos 1–5 captions. (PDF 2177 kb)

Supplementary Video 1

Longitude-latitude variation of the SDO/AIA and STEREO/EUVI brightpoints identification from 1 June 2010 to 31 May 2013. (MP4 48622 kb)

Supplementary Video 2

Longitude-latitude variation of the AIA/EUVI brightpoints density distribution from 1 June 2010 to 31 May 2013. (MP4 15153 kb)

Supplementary Video 3

Pole-on projection for the AIA/EUVI brightpoints density distribution in the southern solar hemisphere. (MP4 31385 kb)

Supplementary Video 4

Pole-on projection for the AIA/EUVI brightpoints density distribution in the northern solar hemisphere. (MP4 32667 kb)

Supplementary Video 5

Latitude versus time variation of the 28-day-averaged AIA/EUVI brightpoints density at different solar longitudes (MP4 6491 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McIntosh, S., Cramer, W., Pichardo Marcano, M. et al. The detection of Rossby-like waves on the Sun. Nat Astron 1, 0086 (2017). https://doi.org/10.1038/s41550-017-0086

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing