Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three eras of planetary exploration

Abstract

The number of known exoplanets rose from zero to one in the mid-1990s, and has been doubling approximately every two years ever since. Although this can justifiably be called the beginning of an era, an earlier era began in the 1960s when humankind began exploring the Solar System with spacecraft. Even earlier than that, the era of modern scientific study of the Solar System began with Copernicus, Galileo, Brahe, Kepler and Newton. These eras overlap in time, and many individuals have worked across all three. This Review explores what the past can tell us about the future and what the exploration of the Solar System can teach us about exoplanets, and vice versa. We consider two primary examples: the history of water on Venus and Mars; and the study of Jupiter, including its water, with the Juno spacecraft.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: D/H ratio in the Solar System.
Figure 2: North polar view of Jupiter taken by JunoCam on the Juno spacecraft.

NASA/JPL-CALTECH/SWRI/MSSS

Figure 3: South polar view of Jupiter.

NASA/JPL-CALTECH/SWRI/MSSS

Figure 4: North polar view of Saturn taken by the wide-angle camera on Cassini.

NASA/JPL-CALTECH/SPACE SCIENCE INSTITUTE

References

  1. Galilei, G. Siderius Nuncius (1610).

  2. Copernicus, N. De Revolutionibus Orbium Coelestium (1543).

  3. Kepler, J. Astronomia Nova (1609).

  4. Newton, I. Principia Mathematica (1687).

  5. Cavendish, H. Experiments to determine the density of the Earth. Phil. Trans. Roy. Soc. 88, 469–526 (1798).

    Article  Google Scholar 

  6. Marcy, G. W. et al. The planet around 51 Pegasi. Astrophys. J. 481, 926–935 (1997).

    Article  ADS  Google Scholar 

  7. Butler, R. P. et al. Attaining Doppler precision of 3 m s−1. Pub. Astron. Soc. Pacific 108, 500–509 (1996).

    Article  ADS  Google Scholar 

  8. Borucki, W. J. et al. Kepler planet-detection mission: Introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  9. Menzel, D. H., Coblentz, W. W. & Lampland, C. O. Planetary temperature derived from water-cell transmissions. Astrophys. J. 63, 177–187 (1926).

    Article  ADS  Google Scholar 

  10. Adel, A. & Slipher, V. M. The constitution of the atmospheres of the giant planets. Phys. Rev. 46, 902–906 (1934).

    Article  ADS  Google Scholar 

  11. Kiess, C. C., Corliss, C. H. & Kiess, H. K. High-dispersion spectra of Jupiter. Astrophys. J. 132, 221–231 (1960).

    Article  ADS  Google Scholar 

  12. Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).

    Article  ADS  Google Scholar 

  13. Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    Article  ADS  Google Scholar 

  14. Kreidberg, L. et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. Lett. 793, L27 (2014).

    Article  ADS  Google Scholar 

  15. Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505, 69–72 (2014).

    Article  ADS  Google Scholar 

  16. Knutson, H. A. et al. 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22 (2012).

    Article  ADS  Google Scholar 

  17. Showman, A. P. & Guillot, T. Atmospheric circulation and tides of ‘51 Pegasus b-like' planets. Astron. Astrophys. 385, 166–180 (2002).

    Article  ADS  Google Scholar 

  18. Mallama, A., Wang, D. & Howard, R. A. Venus phase function and forward scattering from H2SO4 . Icarus 182, 10–22 (2006).

    Article  ADS  Google Scholar 

  19. Owen, T., Barnun, A. & Kleinfeld, I. Possible cometary origin of heavy noble-gases in the atmospheres of Venus, Earth and Mars. Nature 358, 43–46 (1992).

    Article  ADS  Google Scholar 

  20. Owen, T. & Barnun, A. Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995).

    Article  ADS  Google Scholar 

  21. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    Article  ADS  Google Scholar 

  22. Altwegg, K. et al. 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).

    Article  Google Scholar 

  23. Barnes, J. J. et al. An asteroidal origin for water in the Moon. Nat. Commun. 7, 11684 (2016).

    Article  ADS  Google Scholar 

  24. Komabayashi, M. Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and hydrosphere of one component-two phase system under constant solar radiation. J. Meteor. Soc. Jpn 45, 137–139 (1967).

    Article  Google Scholar 

  25. Ingersoll, A. P. The runaway greenhouse: A history of water on Venus. J. Atmos. Sci. 26, 1191–1198 (1969).

    Article  ADS  Google Scholar 

  26. Nakajima, S., Hayashi, Y. Y. & Abe, Y. A study on the runaway greenhouse-effect with a one-dimensional radiative convective equilibrium-model. J. Atmos. Sci. 49, 2256–2266 (1992).

    Article  ADS  Google Scholar 

  27. Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  ADS  Google Scholar 

  28. Pujol, T. & North, G. R. Runaway greenhouse effect in a semigray radiative-convective model. J. Atmos. Sci. 59, 2801–2810 (2002).

    Article  ADS  Google Scholar 

  29. Kasting, J. F., Chen, H. & Kopparapu, R. K. Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813 L3 (2015).

    Article  ADS  Google Scholar 

  30. Howard, A. D., Moore, J. M. & Irwin, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. Planets 110 E12S14 (2005).

    Article  ADS  Google Scholar 

  31. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003).

    Article  ADS  Google Scholar 

  32. Wordsworth, R. D. in Annu. Rev. Earth Planet. Sci. Vol. 44 (eds Jeanloz, R. & Freeman, K. H. ) 381–408 (2016).

    Google Scholar 

  33. Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006).

    Article  ADS  Google Scholar 

  34. Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).

    Article  ADS  Google Scholar 

  35. Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  ADS  Google Scholar 

  36. Smith, M. D. The annual cycle of water vapor on Mars as observed by the thermal emission spectrometer. J. Geophys. Res. Planets 107, E11 (2002).

    ADS  Google Scholar 

  37. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    Article  ADS  Google Scholar 

  38. McEwen, A. S. et al. Seasonal flows on warm Martian slopes. Science 333, 740–743 (2011).

    Article  ADS  Google Scholar 

  39. Ingersoll, A. P. Mars: Occurrence of liquid water. Science 168, 972–973 (1970).

    Article  ADS  Google Scholar 

  40. Chevrier, V. F. & Rivera-Valentin, E. G. Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 39, L21202 (2012).

    Article  ADS  Google Scholar 

  41. Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).

    Article  ADS  Google Scholar 

  42. Bahcall, J. N., Huebner, W. F., Lubow, S. H., Parker, P. D. & Ulrich, R. K. Standard solar models and the uncertainties in predicted capture rates of solar neutrinos. Revs. Mod. Phys. 54, 767–800 (1982).

    Article  ADS  Google Scholar 

  43. Minton, D. A. & Malhotra, R. Assessing the massive young sun hypothesis to solve the warm young Earth puzzle. Astrophys. J. 660, 1700–1706 (2007).

    Article  ADS  Google Scholar 

  44. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  ADS  Google Scholar 

  45. Forget, F. et al. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  ADS  Google Scholar 

  46. Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet' and ‘cold and icy' scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    Article  ADS  Google Scholar 

  47. Boynton, W. V. et al. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81–85 (2002).

    Article  ADS  Google Scholar 

  48. Jakosky, B. M. et al. The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015).

    Article  ADS  Google Scholar 

  49. Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G. & Brain, D. A. Initial results from the MAVEN mission to Mars. Geophys. Res. Lett. 42, 8791–8802 (2015).

    Article  ADS  Google Scholar 

  50. Jontof-Hutter, D., Rowe, J. F., Lissauer, J. J., Fabrycky, D. C. & Ford, E. B. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 522, 321–323 (2015).

    Article  ADS  Google Scholar 

  51. Niemann, H. B. et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. Planets 103, 22831–22845 (1998).

    Article  ADS  Google Scholar 

  52. Folkner, W. M., Woo, R. & Nandi, S. Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal. J. Geophys. Res. Planets 103, 22847–22855 (1998).

    Article  ADS  Google Scholar 

  53. Mahaffy, P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer. J. Geophys. Res. Planets 105, 15061–15071 (2000).

    Article  ADS  Google Scholar 

  54. Stevenson, D. J. & Salpeter, E. E. Dynamics and helium distribution in hydrogen–helium fluid planets. Astrophys. J. Supp. Ser. 35, 239–261 (1977).

    Article  ADS  Google Scholar 

  55. Atreya, S. K., Mahaffy, P. R., Niemann, H. B. & Owen, T. C. Composition and cloud structure of Jupiter's deep atmosphere. Highlights Astron. 12, 597–601 (2002).

    Article  ADS  Google Scholar 

  56. Hersant, F., Gautier, D. & Lunine, J. I. Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci. 52, 623–641 (2004).

    Article  ADS  Google Scholar 

  57. Janssen, M. A. et al. Microwave remote sensing of Jupiter's atmosphere from an orbiting spacecraft. Icarus 173, 447–453 (2005).

    Article  ADS  Google Scholar 

  58. Grassi, D. et al. Jupiter's hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers. Planet. Space Sci. 58, 1265–1278 (2010).

    Article  ADS  Google Scholar 

  59. Poincare, H. Sur la precession des corps deformables. Bull. Astron. 27, 321–356 (1910).

    MathSciNet  MATH  Google Scholar 

  60. Kaspi, Y., Flierl, G. R. & Showman, A. P. The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus 202, 525–542 (2009).

    Article  ADS  Google Scholar 

  61. Fletcher, L. N., Orton, G. S., Teanby, N. A., Irwin, P. G. J. & Bjoraker, G. L. Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199, 351–367 (2009).

    Article  ADS  Google Scholar 

  62. Fletcher, L. N., Orton, G. S., Teanby, N. A. & Irwin, P. G. J. Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 202, 543–564 (2009).

    Article  ADS  Google Scholar 

  63. Fletcher, L. N. et al. Sub-millimetre spectroscopy of Saturn's trace gases from Herschel/SPIRE. Astron. Astrophys. 539, A44 (2012).

    Article  Google Scholar 

  64. Militzer, B., Hubbard, W. B., Vorberger, J., Tamblyn, I. & Bonev, S. A. A massive core in Jupiter predicted from first-principles simulations. Astrophys. J. Lett. 688, L45 (2008).

    Article  ADS  Google Scholar 

  65. Helled, R. & Guillot, T. Interior models of Saturn: Including the uncertainties in shape and rotation. Astrophys. J. 767, 113 (2013).

    Article  ADS  Google Scholar 

  66. Hubbard, W. B. Gravitational signature of Jupiter's deep zonal flows. Icarus 137, 357–359 (1999).

    Article  ADS  Google Scholar 

  67. Connerney, J. E. P., Acuna, M. H., Ness, N. F. & Satoh, T. New models of Jupiter's magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. Space Phys. 103, 11929–11939 (1998).

    Article  ADS  Google Scholar 

  68. Connerney, J. E. P., Ness, N. F. & Acuna, M. H. Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations. Nature 298, 44–46 (1982).

    Article  ADS  Google Scholar 

  69. Burton, M. E., Dougherty, M. K. & Russell, C. T. Saturn's internal planetary magnetic field. Geophys. Res. Lett. 37, 5 (2010).

    Article  Google Scholar 

  70. Khurana, K. K. et al. in Jupiter: The Planet, Satellites, and Magnetosphere (ed. Bagenal, F. ) Ch. 24 (Cambridge Univ. Press, 2004).

    Google Scholar 

  71. Andre, N. et al. Identification of Saturn's magnetospheric regions and associated plasma processes: synopsis of Cassini observations during orbit insertion. Rev. Geophys. 46, RG4008 (2008).

    Article  ADS  Google Scholar 

  72. Hill, T. W. Inertial limit on corotation. J. Geophys. Res. Space Phys. 84, 6554–6558 (1979).

    Article  ADS  Google Scholar 

  73. de Pater, I. & Lissauer, J. J. Planetary Sciences 2nd edn (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  74. Donahue, T. M. & Pollack, J. B. in Venus (eds Hunten, D. M., Collin, L., Donahue, T. M. & Moroz, V. I. ) 1003–1036 (Univ. Arizona Press, 1983).

    Google Scholar 

  75. Smith, D. E. et al. Mars orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689–23722 (2001).

    Article  ADS  Google Scholar 

  76. Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011).

    Article  ADS  Google Scholar 

  77. Ingersoll, A. P. Planetary Climates (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  78. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  79. Atreya, S. K. in Medicean Moons: Their Impact on 400 Years of Discovery (eds Barbieri, C., Chakrabarti, S., Coradini, M. & Lazzarin, M. ) 130–140 (Cambridge Univ. Press, 2010).

    Google Scholar 

  80. Bockelee-Morvan, D. et al. Deuterated water in comet C 1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998).

    Article  ADS  Google Scholar 

  81. Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. in Venus II (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J. ) Ch. 13 (Univ. Arizona Press, 1997).

    Google Scholar 

  82. Dyudina, U. A. et al. Saturn's south polar vortex compared to other large vortices in the Solar System. Icarus 202, 240–248 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA through the Juno and Cassini Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Ingersoll.

Ethics declarations

Competing interests

The author declares no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ingersoll, A. Three eras of planetary exploration. Nat Astron 1, 0010 (2017). https://doi.org/10.1038/s41550-016-0010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-016-0010

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing