Abstract
In this short review, we aim to provide a topical update on the status of efforts to understand the superconductivity of Sr_{2}RuO_{4}. We concentrate on efforts to identify a superconducting order parameter symmetry that is compatible with all the major pieces of experimental knowledge of the material, and highlight some major discrepancies that have become even clearer in recent years. As the pun in the title suggests, we have tried to start the discussion from scratch, making no assumptions even about fundamental issues such as the parity of the superconducting state. We conclude that no consensus is currently achievable in Sr_{2}RuO_{4}, and that the reasons for this go to the heart of how well some of the key probes of unconventional superconductivity are really understood. This is, therefore, a puzzle that merits continued indepth study.
Introduction
The purpose of this short review is to give a status report on research into the superconducting properties, and most specifically the order parameter, of the widelystudied superconductor Sr_{2}RuO_{4}.^{1} Our approach will be to remain open to all possibilities, and our conclusion will be that the issue is not settled after over 20 years of research. That being the case, it is perhaps worth beginning with a brief discussion of why this is an important problem, worthy of continued research.
Arguably, the defining property of a socalled unconventional superconducting state is that the superconducting order parameter has a nonuniform phase in momentum space, such that it can be destroyed by sufficiently strong scattering from nonmagnetic disorder.^{2} The strength of scattering required depends on the strength of the superconductivity, and Sr_{2}RuO_{4} has the most stringent purity criterion for observation of any known superconductor.^{3} Its study, therefore, motivated the growth of extremely highquality single crystals,^{4} in which it has been possible to determine the Fermi surface and normal state Fermi liquid quasiparticle properties with high accuracy and precision.^{5,6,7,8} That Fermi surface is relatively simple. It consists of three sheets originating from three 4d orbitals of Ru with some contribution from the 2p orbitals of oxygen, and is highly twodimensional. In that sense it is slightly more complicated that the Fermi surfaces of the simplest unconventional superconductors (overdoped cuprates and some organic superconductors), but considerably simpler that those of many heavy fermion or pnictide superconductors. It has, therefore, been amenable to the construction of accurate but tractable tightbinding models, allowing the a host of modern manybody calculations to be compared with the properties of a real material.^{9,10,11,12,13,14,15,16,17,18}
When one looks at the increasing sophistication of the techniques available for the study of unconventional superconductors, one has the feeling that the Sr_{2}RuO_{4} problem really ought to be soluble, for several reasons. Firstly, the normal state is a wellunderstood Fermi liquid. Secondly, the extremely high purity of the best available samples means that disorder is not nearly as big a complicating factor in experiments as it is in most other materials. Thirdly, the disorder sensitivity of the superconductivity comes because as well as the order parameter being unconventional, the coherence length in the superconducting state is rather long: approximately 750 Å. This means that the thermodynamic features expected of a meanfield, BardeenCooperSchriefferlike transition are seen, and that the superconducting state averages over microscopic detail in a way that is seldom the case for materials with unconventional order parameters whose coherence volumes contain only a few electrons.
The fact that full understanding of the superconducting state of Sr_{2}RuO_{4} has not yet been achieved shows the level of challenge that still exists at the interface between theory and experiment in quantum materials, and strongly motivates a new generation of research on this fascinating compound. Our goal is to frame that research by highlighting the main problems with finding a fully selfconsistent description of the key experimentally determined features of the superconducting state, and to speculate about how the current mysteries might, in future, be resolved. Because a number of lengthy and detailed reviews of the properties of Sr_{2}RuO_{4} already exist,^{3, 6, 19,20,21,22} we will not attempt to be comprehensive. Instead, we will select the issues that we believe to be the most important, and highlight those. We believe that the discussion we will give has significance far beyond understanding the physics only of Sr_{2}RuO_{4}, because the experimental techniques whose results seem to be in contradiction are among the most commonly used across the whole field of unconventional superconductivity. It is, therefore, worrying that such significant discrepancies exist when they are applied to study some of the best single crystalline samples available of any unconventional superconductor.
Summary of the theoretical situation
Although the bulk of this paper will be concerned with a discussion of experiment and its interpretation, it is useful to first give some background to that discussion with some general remarks on the current theoretical status of the field.
Soon after the discovery of the superconductivity of Sr_{2}RuO_{4},^{1} Rice and Sigrist^{23} noted that the fact that its normal state is a Fermi liquid with Landau parameters^{3, 5,6,7} similar to those of ^{3}He.^{24} They suggested that the analogy might extend to Sr_{2}RuO_{4} having a spin triplet superconducting state with an order parameter corresponding to a twodimensional version of one or more of those seen in superfluid ^{3}He. This highly influential paper stimulated interest in the possibility of triplet superconductivity Sr_{2}RuO_{4}, something that has subsequently been investigated in a long series of calculations by many different groups, each involving different starting assumptions and approximations.^{10,11,12,13,14,15, 17, 25,26,27,28,29,30,31,32,33,34,35} Later, the importance of spinorbit coupling was highlighted by a number of authors,^{36,37,38,39} who stressed that the effects of this coupling are strongly kdependent. This means that it might be misleading to use language such as ‘spintriplet’ or ‘spinsinglet’ as descriptors of different superconducting states. A safer language, which we adopt here, is odd or even parity, which does not rely on decoupling the spin and orbital degrees of freedom.
The differences between the theoretical predictions that have been made concerning Sr_{2}RuO_{4} (which to some extent depend on the input assumptions made) are arguably less important than the common features that have emerged. The most striking of these is illustrated in Fig. 1a for a calculation based on the model of ref. 33: Spinfluctuation theories based on realistic parameterisations of the experimental Fermi surface and mass renormalisations of Sr_{2}RuO_{4} find that the freeenergy difference between odd and even parity states is small. Depending on the input parameters, either parity can be favoured, and among the richer odd parity states, there are also a number of near degeneracies. We stress this point because it immediately illustrates why determining the order parameter symmetry of Sr_{2}RuO_{4} is not a trivial problem. Its physical origin almost certainly lies in the structure of χ(q,ω). Although difficult to measure with precision, the similarity of the electronic structure of Sr_{2}RuO_{4} to that of the itinerant ferromagnets SrRuO_{3} and Sr_{4}Ru_{3}O_{10} and the strongly enhanced metamagnet Sr_{3}Ru_{2}O_{7} indicates the likelihood of enhanced susceptibility near q = 0, a conclusion strengthened by the experiments showing that one of its Fermi surface sheets comes close to van Hove singularities at the M point of the twodimensional Brillouin zone.^{40,41,42} Some broad weight is seen at low q in inelastic neutron scattering, but those experiments also famously established the existence of a prominent feature at approximately q = (2π/3a, 2π/3a).^{43, 44} As might be expected of such an electronic structure,^{9} the addition of significant levels of dopants such as Ti can stabilise static order at finite q.^{45} Crudely speaking, a susceptibility with this kind of q structure can be exploited by many different flavours of spinfluctuation mediated pairing, so it naturally places Sr_{2}RuO_{4} close to the border between odd and even parity superconducting states.
The second notable feature, illustrated in Fig. 1b, c, is the complexity of the predicted gap structures. Even the relatively simple Fermi surface of Sr_{2}RuO_{4} introduces considerable variation in the average gap magnitude both between sheets and within a single sheet. Odd parity states may or may not have symmetryimposed gap nodes, but the ones without nodes have deep gap minima, and the even parity states have a far richer nodal structure than one’s naive expectation based on experience of singleband superconductors.
Depending on one’s point of view, Nature is either being unkind or kind here—unkind because the near degeneracies among different order parameters and the complexity of the gap structures associated with those order parameters make the problem unexpectedly hard, or kind because it offers the prospect of rich superconducting phase diagrams, possibly including transitions between odd and even parity states.
Identification of key experiments
It is clear from the above discussion that unambiguous determination of the order parameter symmetry of Sr_{2}RuO_{4} is likely to require accurate and precise experimental information, because there is not a sufficiently clear difference between the free energies of different candidate states for theory alone to provide a definitive answer. However, the calculations provide guidance on the classes of experiment that are likely to be the most important. Examination of Fig. 1 immediately suggests that thermodynamic data are likely to be complicated, showing signatures beyond those expected of a single gap,^{46} and this is seen in experiment (Fig. 2). Even qualitative analysis of the temperaturedependent heat capacity gives evidence for two or more gaps differing in magnitude by only of order a factor of two.^{47, 48} The second thing that Fig. 1 suggests is that measurements sensitive to the density of states in the vicinity of gap nodes will need to be performed under extremely stringent conditions if they are to yield definitive information. Ideally, they will need to go to very low temperatures (50 mK or below), be performed on the highest purity samples and have the capability of distinguishing accidental nodes or deep gap minima from those imposed by symmetry.^{49} Considerable detail and very low temperature measurement will likely be required in order to distinguish one candidate order parameter from another.
The situation outlined above highlights the importance of measurements that are directly sensitive to symmetry. Admirable attempts have been made to conduct paritysensitive tunnelling studies of Sr_{2}RuO_{4} ^{50, 51}; while these have generally favoured odd parity superconducting states, the reproducibility from sample to sample is not as good as one would wish, so the results are better regarded as being suggestive than conclusive. There has also been an intriguing observation consistent with the existence of half flux quantum vortices in certain special conditions, again interpreted in terms of an odd parity state with a twocomponent order parameter, but not yet representing conclusive proof of such a state.^{52} Another approach, still in its infancy but holding considerable promise, is the study of the proximity effect between Sr_{2}RuO_{4} and metallic magnets,^{53} for which the predicted behaviour for odd and even parity states is substantially different.^{54}
Experiments probing time reversal symmetry breaking
Considerable experimental effort has gone into an explicitly symmetryrelated issue, namely investigating whether time reversal symmetry (TRS) is broken on entry into the superconducting state of Sr_{2}RuO_{4}. Two of the probes most often employed to search for TRS breaking in unconventional superconductors have given a positive result. Muon spin rotation (μSR) indicates the development of spontaneous magnetism near the muon implantation sites even when samples are cooled in zero external field,^{55} and this conclusion was confirmed in later measurements of magnetooptic polar Kerr rotation.^{56} Both the key datasets are shown in Fig. 3. It is not easy to perform a quantitative interpretation of the magnitude of the signal seen in either of these experiments, so the strength and origin of the TRS breaking is not firmly established. Further evidence has been reported from μSR experiments on samples whose T _{c} is changed by incorporating different levels of nonmagnetic impurities that the TRSbreaking signals are associated with the onset of superconductivity,^{57} but it would be desirable to see more experimental work on this issue.
In spite of the abovementioned caveats, the prevailing inference from the μSR and Kerr rotation experiments is that the observations result from the order parameter having two degenerate components in its ‘orbital’ degree of freedom (In this context we note that there a large quantitative discrepancy between the size of the 0.5 G volumeaveraged internal fields seen in the muon spin rotation measurements^{55} and the much lower limit (≤1 mG) on internal fields established by scanning SQUID measurements^{58,59,60}). If there are two degenerate order parameter components resulting from the orbital degree of freedom, there are important consequences for the likely parity of the superconducting state, because not all candidate order parameter components are degenerate in the absence of externally applied fields. The potential significance of this statement can be illustrated by considering the case of a material without spinorbit coupling. In the tetragonal crystal field of Sr_{2}RuO_{4,} the only nonaccidental way to have two degenerate dwave order parameter components involving intraband pairing is for them to be d _{xz} and d _{yz},^{31} but a TRSbreaking order parameter of the form d _{xz} ± id _{yz} would feature horizontal line nodes and Cooper pairs formed between electrons in different RuO planes. Although not impossible, and indeed also discussed theoretically in the context of odd parity order parameters,^{12, 34} interplane pairing would be a truly exotic state that seems intuitively unlikely in a material with such a strongly twodimensional Fermi surface. In contrast, pwave components remain degenerate in a tetragonal crystal field, which is why a state of the form p _{x} _{±} ip _{y} with inplane pairing has been so extensively discussed in the literature.
As stressed throughout this article, spinorbit coupling is important in Sr_{2}RuO_{4}, so examination of the degeneracysplitting of even parity order parameters based on inplane Cooper pairing requires explicit numerical calculation using realistic multiband models rather than simple estimates regarding a purely orbital part of a spinorbit separable state. Such calculations confirm that the degeneracy splitting of the even parity states is usually substantial: for example, for the parameters used to produce Fig. 1 from the model of ref. 33 the predicted T _{c} of a d _{xy} state is approximately one fifth of that of a \({d_{{{\rm{x}}^2}  {{\rm{y}}^2}}}\) state. In the presence of interactions (included in the model^{33} used to construct Fig. 1), these energetic differences become parameterdependent, and accidental crossings can occur at which different even parity states involving inplane become degenerate. One can also construct timereversalsymmetrybreaking even parity states on the threesheet Fermi surface of Sr_{2}RuO_{4} involving interorbital pairing, but at the cost that in such states the intraorbital pairing amplitude would have to be zero. The accurate statement, therefore, is that TRSbreaking condensates of even parity and inplane Cooper pairs are not impossible, but would require finetuning to particular points in parameter space or the imposition of pairing conditions that both seem unlikely in a real material.
One of the expectations of a simple p _{x} _{±} ip _{y} state is the existence of edge currents, which would produce measurable edge magnetic fields. Extensive experimental searches for these edge fields have yielded mostly null results,^{58,59,60,61} but in the meantime more sophisticated calculations have suggested a variety of ways in which the edge currents could be far smaller that those predicted by the first naive estimates.^{62,63,64,65} More work will be needed to settle this issue completely, but for now it seems as if the lack of observed edge currents does not rule out the existence of a TRS breaking superconducting order parameter in Sr_{2}RuO_{4}. Another consequence of a twocomponent order parameter might be the formation of domains in the superconducting state (though we note the comments on this in ref. 66). A number of observations are qualitatively consistent with such a hypothesis,^{51, 56, 67, 68}, seemingly favouring the existence of an odd parity order parameter, but the estimates of the characteristic sizes of such domains vary widely.
Cooper pair formation and spin susceptibility in the superconducting state
One of the predictions for a simple even parity superconductor with weak spinorbit coupling is a strong drop in its spin susceptibility as the superconducting state is entered. This occurs because the nonmagnetic singlet Cooper pairs are removed from the reservoir of conduction electrons whose energy can be lowered by fieldinduced spin polarisation.^{69} In a superconductor it is not trivial to isolate the contribution of spin to the magnetic susceptibility in the presence of the orbital diamagnetism, but it can be achieved, in appropriate circumstances, by study and analysis of the nuclear magnetic resonance (NMR) Knight shift or inelastic neutron scattering. Spinorbit coupling complicates the analysis, but it should still be possible in principle to distinguish between the responses of even and odd parity superconductors. For this reason, study of the Knight shift has become a standard probe of unconventional superconductivity.
Such measurements have been performed extensively on Sr_{2}RuO_{4}; example datasets are shown in Fig. 4. There is no experimental inconsistency in the reported signals: no drop of the extracted spin susceptibility has been seen in any NMR or neutron scattering measurement on Sr_{2}RuO_{4},^{70,71,72,73,74,75} and indeed a small rise has been reported in the most precise measurements to date.^{72} All of the available data have been interpreted in terms of odd parity order parameters, though the lack of a dependence of the results on field orientation has necessitated the slightly worrying postulate that the vector order parameter can be rotated in extremely small applied fields of order 20 mT. An extensive discussion of the Knight shift measurements and issues involved in their interpretation can be found in ref. 20.
Apparently contradictory results
If the TRSbreaking and spin susceptibility measurements were the only information available about Sr_{2}RuO_{4}, there would be little doubt that it has an odd parity order parameter. In reality, however, other work favours different conclusions. One prediction for p _{x} ± ip _{y} (and for d _{xz} ± id _{yz}) is that lifting the tetragonal pointgroup symmetry of the system through inplane magnetic field^{76} or uniaxial pressure^{77} should split the transition temperatures of the p _{x} and p _{y} components, yielding a double transition. Independent of microscopic detail, the splitting should be proportional to the strength of the applied symmetrybreaking field.^{77} However, experiments with both inplane field^{78, 79} and uniaxial pressure^{80, 81} have not revealed such splitting.
Arguably an even more worrying discrepancy is revealed by studies of the superconducting upper critical field. In any superconductor, if the energy cost in maintaining equilibrium diamagnetism in the presence of the applied field becomes too high, the superconductivity is lost. It is well known that in standard spin singlet superconductors, contributions to this energy cost come from both creating the diamagnetic response and from a loss of spin energy in forming the Cooper pairs.
If the dominant energy cost comes from the energy required to expel the field by setting up appropriate screening currents, the critical field is often described as being ‘orbitally limited’. As we shall see below, this terminology is confusing in the description of modern superconductors, so we will refer to the effect here as ‘bulk diamagnetic orbital limiting’. In most superconductors this orbital limiting is dominant, and this is indeed the case for Sr_{2}RuO_{4} with the magnetic field applied parallel to the crystallographic caxis (H _{//c}). If, however, the material is strongly type II, allowing efficient flux penetration via vortices, a second class of physics can limit the upper critical field if the Cooper pairs are spin singlets. As discussed above, spin singlet Cooper pairs are nonmagnetic objects, so their formation results in a loss of magnetic polarisation energy. If this loss is overbalanced by the superconducting condensation energy, the condensate forms and the spin susceptibility drops below T _{c}. As the applied field is raised, however, there comes a point at which the magnetic energy overpowers the condensation energy and the superconductivity is destroyed. This process is known as ‘spin limiting’ or ‘Pauli limiting’.^{82} For a fullygapped spin singlet superconductor at T = 0, the condition is:
where χ _{P} is the Pauli susceptibility, H the applied field, N(0) the density of states at the Fermi level and Δ the superconducting energy gap. For this mechanism, the persistent currents giving the diamagnetic response disappear because the spinrelated energetics result in the premature destruction of the Cooper pairs and hence of the condensate. In a multiband material, appropriate averages need to be taken, but within factors of order one the prediction is that the limiting will occur when the applied field in tesla is the same as the transition temperature in kelvin. The Pauli limit is, therefore, a fundamental limit that can be observed in strongly type II superconductors with even parity order parameters. In simple interpretations, it should be entirely consistent with the information obtained from the Knight shift, because both phenomena are rooted in the competition between superconducting condensation energy and spin polarisation energy, as illustrated in the sketch in Fig. 5.
For magnetic fields applied in the ab plane (H _{//ab}), Sr_{2}RuO_{4} is strongly type II. Its Fermi surface is so anisotropic that for this direction, the critical field based on bulk diamagnetic orbital limiting is expected to be at least a factor of 50 higher than that seen for the field applied parallel to c.^{3, 6} In fact, small angle scattering studies of the vortex lattice have established the intrinsic anisotropy parameter of the superconducting state, which determines the anisotropy of critical fields based on diamagnetic orbital limiting to be 60.^{83} This would predict a critical field of approximately 4.5 T for H _{//ab}. In contrast, the measured value is 1.5 T (Fig. 6a)^{84} and the transition at low temperatures is firstorder, as expected for Pauli limiting^{85} rather than the secondorder transition expected for diamagnetic orbital limiting.^{86,87,88} Further, the value of 1.5 T is semiquantitatively consistent with the value estimated by considering the energetics of Pauli limiting (in a simple weakly coupled superconductor with a uniform gap and no magnetic enhancement, the Pauli limit is that H _{c2} in tesla should be a factor of 1.8 times T _{c} in kelvin.^{82} (Given the complexity of the gap and the magnetic susceptibility predicted for Sr_{2}RuO_{4}, direct numerical comparisons should be performed with extreme caution, so the fact that observed value is of order 1 instead of 1.8 should not be overinterpreted).
The data of Fig. 6a seem to be qualitatively at odds with the measurements of the NMR or neutron Knight shift, which give no evidence for a spinrelated magnetic energy competing with the superconducting condensation energy (note the discrepancy between the combination of Figs. 4 and 6a and the sketch of Fig. 5). The discrepancy has recently become even starker because of uniaxial pressure studies in which the T _{c} of Sr_{2}RuO_{4} was raised to 3.5 K.^{42} This was accompanied by an increase of the critical field for H _{ //c} by a factor of 20 from 0.075 to 1.5 T. Given the anisotropy factor of 60, an enormous critical field would then be predicted for H _{//ab}, but instead only a modest rise to 4.5 T was observed (Fig. 6b).
The above observations make it seem certain that some critical field limiting mechanism is operating in Sr_{2}RuO_{4}. Quantitatively, it is in quite good agreement with the simple predictions of Pauli limiting associated with an even parity order parameter, but it is perhaps too early to jump firmly to that conclusion. For example, as pointed out in ref. 89, odd parity superconductors could themselves experience critical field limiting at some level in the presence of spinorbit coupling. In these circumstances, it is difficult to decouple a microscopic spin susceptibility from a microscopic orbital susceptibility, i.e., a magnetic susceptibility arising from the orbital character of the states at the Fermi surface. The issue of how strong this effect could be in Sr_{2}RuO_{4} will be a matter for precise calculation using models based on realistic parameterisations of the electronic structure including this spinorbit coupling. Even if those calculations successfully accounted for the observed critical fields, however, other things would then need to be understood. In particular, it is urgent to obtain a theoretical understanding that reconciles critical field limiting of any microscopic origin with the fact that no associated reduction in susceptibility is observed in the NMR studies.
Summary and future work
The tone of the summary that one can give about the current situation is probably dependent on one’s mood and one’s natural levels of optimism or pessimism. The discrepancies that we have outlined above are not minor issues of detail but major qualitative disagreements between the results of experiments that are among the most prominent used in the study of superconductivity. At one level, these disagreements are a cause for depression about the state of the field of Sr_{2}RuO_{4} physics (and certainly the source of conflict at conferences and meetings!). They also raise uncomfortable questions about how well we understand many other unconventional superconductors. The issue is unlikely to be the quality of the experimental data. The data that we have focused on in this article are not the result of quick and speculative research on poorly controlled samples, but stem from multiply verified experiments conducted over many years on samples whose quality is among the highest available in any unconventional superconductor. Instead, the contradictions observed in Sr_{2}RuO_{4} suggest that interpretation of some of the key experiments commonly used in the field of unconventional superconductivity is not yet fully understood.
However, these problems can also be viewed as an opportunity. For all the reasons outlined in the introduction, Sr_{2}RuO_{4} is a good superconductor on which to refine our understanding. It is, therefore, important that efforts to resolve the puzzles that it presents are continued and even stepped up. Although it is dangerous to try to predict the future in too much detail, several productive avenues of future research seem clear:

i)
There is much to be learned from the kind of studies pioneered in ref. 53 of proximity effects between Sr_{2}RuO_{4} and other magnetic and nonmagnetic metals, with renewed efforts desirable on both the relevant experiment and theory.

ii)
The existence of reliable and reproducible tunnel junctions into Sr_{2}RuO_{4} would enable the paritysensitive measurements that are so important to distinguish between putative classes of order parameter. This research would likely receive a major boost if sufficiently pure thin films^{90} could be grown reproducibly.

iii)
The recent uniaxial pressure experiments of refs. 42, 80 offer the possibility in principle of conducting a wide range of experiments on samples whose superconducting transition temperature can be increased by a factor of 2.3, from 1.5 to 3.5 K. The tuned samples also have a lower crystal symmetry than those at ambient pressure, so in some senses one has the opportunity to create entirely new materials in these experiments. Given the neardegeneracies of competing order parameters highlighted in section 2, it is also possible that order parameter transitions could exist as a function of uniaxial pressure, giving a rich overall phase diagram.

iv)
There is evidence from a sharp drop in the critical current of Pb–Ru–Sr_{2}RuO_{4} junctions as the temperature is reduced through 1.5 K for interference between the superconductivity around ruthenium inclusions and that in bulk Sr_{2}RuO_{4}.^{91, 92} There is also evidence for internal degrees of freedom in the superconductivity of Sr_{2}RuO_{4} from hysteretic and noisy critical currents in such junctions,^{50, 92, 93} and in Sr_{2}RuO_{4} microbridges.^{94} Further investigation of the origin of these observations is highly desirable.

v)
Although the complexity of likely gap structures is a complicating factor, it would of course be highly desirable to have highprecision, lowtemperature information that established the gap structure of Sr_{2}RuO_{4}. Recent normal state quasiparticle interference experiments^{95} give the hope that extension to low temperatures might become possible.

vi)
It has been widely assumed that, with the best samples having mean free paths of microns and the coherence length being over one hundred times smaller, true cleanlimit study of the phase diagram of Sr_{2}RuO_{4} had been achieved. Very recently, however, it was reported in ref. 96 that this might not be the case, with faint signs of superconductivity persisting to higher than expected applied fields in two extremely pure crystals. The authors of ref. 96 highlight the similarity of such a situation to observations made on organic superconductors, where they are interpreted in terms of entry to a FuldeFerrellLarkinOvchinnokov phase. Whether or not this observation is confirmed and extended, it highlights the everpresent need to strive for still further improvements in sample purity. This aspect of higher purity is likely concerned with point disorder, but extended defects such as dislocations or even macroscopic Ru inclusions also need to be carefully monitored, since there is considerable evidence that T _{c} is increased in their spatial vicinity.^{97, 98} The recent observations on externally strained samples lead one to speculate that this T _{c} enhancement is due to internal strain, so obtaining truly pristine Sr_{2}RuO_{4} will also likely require detailed knowledge and control of strain fields.

vii)
The discussion in this review has largely focused on experiment, but there is also a clear need for continued work on theory, particularly on models concentrating on incorporating the kdependent effects of spinorbit coupling^{37,38,39} in a realistic way. Is it possible that the contradictions outlined above only appear to be problems because the theories that are being used to frame the interpretation of the key experiments are still missing something? One obvious deficiency in most current theories based on ‘realistic’ electronic structure is that they are constructed in two dimensions, and hence ignore dispersion and spinorbit coupling effects that vary with k _{z}.^{37} This is especially glaring in light of the strangeness of the properties in inplane magnetic fields, so it is urgent that these theories be extended to the zdirection. Further theoretical work on collective modes^{14, 99} would also be desirable, as this leads to concrete predictions that can be investigated experimentally. In parallel with this, it would be interesting to continue to investigate the precise conditions required for the existence of topological superconductivity in Sr_{2}RuO_{4}.^{100}
Overall, then, we prefer the optimistic point of view. In spite of the contradictions that exist in our current understanding of Sr_{2}RuO_{4}, the next decade of research on this fascinating material looks like being at least as exciting as the past two have been.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
 1.
Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).
 2.
Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr_{2}RuO_{4}. Phys. Rev. Lett. 80, 161–164 (1998).
 3.
Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr_{2}RuO_{4} and the physics of spintriplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).
 4.
Mao, Z. Q., Maeno, Y. & Fukazawa, H. Crystal growth of Sr_{2}RuO_{4}. Mater. Res. Bull. 35, 1813–1824 (2000).
 5.
Mackenzie, A. P. et al. Quantum oscillations in the layered perovskite superconductor Sr_{2}RuO_{4}. Phys. Rev. Lett. 76, 3786–3789 (1996).
 6.
Bergemann, C., Julian, S. R., Mackenzie, A. P., NishiZaki, S. & Maeno, Y. Detailed topography of the Fermi surface of Sr_{2}RuO_{4}. Phys. Rev. Lett. 84, 2662–2665 (2000).
 7.
Maeno, Y. et al. Twodimensional Fermi liquid behavior of the superconductor Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 66, 1405–1408 (1997).
 8.
Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction in Sr_{2}RuO_{4}. Phys. Rev. Lett. 85, 5194–5197 (2000).
 9.
Mazin, I. I. & Singh, D. J. Competitions in layered ruthenates: Ferromagnetism versus antiferromagnetism and triplet versus singlet pairing. Phys. Rev. Lett. 82, 4324–4327 (1999).
 10.
Nomura, T. & Yamada, K. Perturbation theory of spintriplet superconductivity for Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 69, 3678–3688 (2000).
 11.
Nomura, T. & Yamada, K. Roles of electron correlations in the spintriplet superconductivity of Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 71, 1993–2004 (2002).
 12.
Zhitomirsky, M. E. & Rice, T. M. Interband proximity effect and nodes of superconducting gap in Sr_{2}RuO_{4}. Phys. Rev. Lett. 87, 057001 (2001).
 13.
Raghu, S., Kapitulnik, A. & Kivelson, S. A. Hidden Quasionedimensional superconductivity in Sr_{2}RuO_{4}. Phys. Rev. Lett. 105, 136401 (2010).
 14.
Chung, S. B., Raghu, S., Kapitulnik, A. & Kivelson, S. A. Charge and spin collective modes in a quasionedimensional model of Sr_{2}RuO_{4}. Phys. Rev. B 86, 064525 (2012).
 15.
Huo, J.W., Rice, T. M. & Zhang, F.C. Spin density wave fluctuations and pwave pairing in Sr_{2}RuO_{4}. Phys. Rev. Lett. 110, 167003 (2013).
 16.
Wang, Q. H. et al. Theory of superconductivity in a threeorbital model of Sr_{2}RuO_{4}. Europhys. Lett. 104, 17013 (2013).
 17.
Tsuchiizu, M., Yamakawa, Y., Onari, S., Ohno, Y. & Kontani, H. Spintriplet superconductivity in Sr_{2}RuO_{4} due to orbital and spin fluctuations: analyses by twodimensional renormalization group theory and selfconsistent vertexcorrection method. Phys. Rev. B 91, 155103 (2015).
 18.
Hsu, Y.T. et al. Manipulating superconductivity in ruthenates through Fermi surface engineering. Phys. Rev. B 94, 045118 (2016).
 19.
Maeno, Y., Rice, T. M. & Sigrist, M. The intriguing superconductivity of strontium ruthenate. Phys. Today 54, 42–47 (2001).
 20.
Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S. & Ishida, K. Evaluation of spintriplet superconductivity in Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 81, 011009 (2012).
 21.
Kallin, C. Chiral pwave order in Sr_{2}RuO_{4}. Rep. Prog. Phys. 75, 042501 (2012).
 22.
Liu, Y. & Mao, Z.Q. Unconventional superconductivity in Sr_{2}RuO_{4}. Phys. CSupercond. Appl 514, 339–353 (2015).
 23.
Rice, T. & Sigrist, M. Sr_{2}RuO_{4}  an electronic analog of He3. J. Phys.Condens. Matter 7, L643–L648 (1995).
 24.
Leggett, A. Theoretical description of new phases of liquidHe3. Rev. Mod. Phys. 47, 331–414 (1975).
 25.
Miyake, K. & Narikiyo, O. Model for unconventional superconductivity of Sr_{2}RuO_{4}: Effect of impurity scattering on timereversal breaking triplet pairing with a tiny gap. Phys. Rev. Lett. 83, 1423–1426 (1999).
 26.
Kuwabara, T. & Ogata, M. Spintriplet superconductivity due to antiferromagnetic spinfluctuation in Sr_{2}RuO_{4}. Phys. Rev. Lett. 85, 4586–4589 (2000).
 27.
Sato, M. & Kohmoto, M. Mechanism of spintriplet superconductivity in Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 69, 3505–3508 (2000).
 28.
Takimoto, T. Orbital fluctuationinduced triplet superconductivity: Mechanism of superconductivity in Sr_{2}RuO_{4}. Phys. Rev. B 62, 14641–14644 (2000).
 29.
Kuroki, K., Ogata, M., Arita, R. & Aoki, H. Cribshaped tripletpairing gap function for an orthogonal pair of quasionedimensional Fermi surfaces in Sr_{2}RuO_{4}. Phys. Rev. B 63, 060506 (2001).
 30.
Yanase, Y. & Ogata, M. Microscopic identification of the Dvector in triplet superconductor Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 72, 673–687 (2003).
 31.
Zutic, I. & Mazin, I. Phasesensitive tests of the pairing state symmetry in Sr_{2}RuO_{4}. Phys. Rev. Lett. 95, 217004 (2005).
 32.
Yoshioka, Y. & Miyake, K. Pairing mechanism and anisotropy of dvector of spintriplet superconductor Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 78, 074701 (2009).
 33.
Scaffidi, T., Romers, J. C. & Simon, S. H. Pairing symmetry and dominant band in Sr_{2}RuO_{4}. Phys. Rev. B 89, 220510 (2014).
 34.
Annett, J. F., Litak, G., Gyorffy, B. L. & Wysokinski, K. I. Interlayer coupling and pwave pairing in strontium ruthenate. Phys. Rev. B 66, 134514 (2002).
 35.
Annett, J. F., Litak, G., Gyorffy, B. L. & Wysokinski, K. I. Spinorbit coupling and symmetry of the order parameter in strontium ruthenate. Phys. Rev. B 73, 134501 (2006).
 36.
Pavarini, E. & Mazin, I. I. Firstprinciples study of spinorbit effects and NMR in Sr_{2}RuO_{4}. Phys. Rev. B 74, 035115 (2006).
 37.
Haverkort, M. W., Elfimov, I. S., Tjeng, L. H., Sawatzky, G. A. & Damascelli, A. Strong spinorbit coupling effects on the fermi surface of Sr_{2}RuO_{4} and Sr_{2}RhO_{4}. Phys. Rev. Lett. 101, 026406 (2008).
 38.
Rozbicki, E. J., Annett, J. F., Souquet, J.R. & Mackenzie, A. P. Spinorbit coupling and kdependent Zeeman splitting in strontium ruthenate. J. Phys.Condens. Matter 23, 094201 (2011).
 39.
Veenstra, C. N. et al. Spinorbital entanglement and the breakdown of singlets and triplets in Sr_{2}RuO_{4} revealed by spin and angleresolved photoemission spectroscopy. Phys. Rev. Lett. 112, 127002 (2014).
 40.
Kikugawa, N., Bergemann, C., Mackenzie, A. P. & Maeno, Y. Bandselective modification of the magnetic fluctuations in Sr_{2}RuO_{4}: A study of substitution effects. Phys. Rev. B 70, 134520 (2004).
 41.
Shen, K. M. et al. Evolution of the fermi surface and quasiparticle renormalization through a van hove singularity in Sr_{2y}La_{y}RuO_{4}. Phys. Rev. Lett. 99, 187001 (2007).
 42.
Steppke, A. et al. Strong peak in T_{c} of Sr_{2}RuO_{4} under uniaxial pressure. Science 355, eaaf9398 (2017).
 43.
Sidis, Y. et al. Evidence for incommensurate spin fluctuations in Sr_{2}RuO_{4}. Phys. Rev. Lett. 83, 3320–3323 (1999).
 44.
Braden, M. et al. Inelastic neutron scattering study of magnetic excitations in Sr2RuO4. Phys. Rev. B 66, 064522 (2002).
 45.
Braden, M. et al. Incommensurate magnetic ordering in Sr_{2}Ru_{1x}Ti_{x}O_{4}. Phys. Rev. Lett. 88, 197002 (2002).
 46.
Agterberg, D. F., Rice, T. M. & Sigrist, M. Orbital dependent superconductivity in Sr_{2}RuO_{4}. Phys. Rev. Lett. 78, 3374–3377 (1997).
 47.
Nishizaki, S., Maeno, Y., Farner, S., Ikeda, S. & Fujita, T. Evidence for unconventional superconductivity of Sr_{2}RuO_{4} from specificheat measurements. J. Phys. Soc. Jpn. 67, 560–563 (1998).
 48.
Firmo, I. A. et al. Evidence from tunneling spectroscopy for a quasionedimensional origin of superconductivity in Sr_{2}RuO_{4}. Phys. Rev. B 88, 134521 (2013).
 49.
Hassinger, E. et al. Vertical line nodes in the superconducting gap structure of Sr_{2}RuO_{4}. Phys. Rev. X 7, 011032 (2017).
 50.
Nelson, K. D., Mao, Z. Q., Maeno, Y. & Liu, Y. Oddparity superconductivity in Sr_{2}RuO_{4}. Science 306, 1151–1154 (2004).
 51.
Kidwingira, F., Strand, J. D., Van Harlingen, D. J. & Maeno, Y. Dynamical superconducting order parameter domains in Sr_{2}RuO_{4}. Science 314, 1267–1271 (2006).
 52.
Jang, J. et al. Observation of halfheight magnetization steps in Sr_{2}RuO_{4}. Science 331, 186–188 (2011).
 53.
Anwar, M. S. et al. Direct penetration of spintriplet superconductivity into a ferromagnet in Au/SrRuO_{3}/Sr_{2}RuO_{4} junctions. Nat. Commun. 7, 13220 (2016).
 54.
Terrade, D., Gentile, P., Cuoco, M. & Manske, D. Proximity effects in a spintriplet superconductorferromagnet heterostucture with a spinactive interface. Phys. Rev. B 88, 054516 (2013).
 55.
Luke, G. M. et al. Timereversal symmetry breaking superconductivity in Sr_{2}RuO_{4}. Nature 394, 558–561 (1998).
 56.
Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M. & Kapitulnik, A. High resolution polar Kerr effect measurements of Sr_{2}RuO_{4}: evidence for broken timereversal symmetry in the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).
 57.
Luke, G. M. et al. Unconventional superconductivity in Sr_{2}RuO_{4}. Phys. B 289, 373–376 (2000).
 58.
Hicks, C. W. et al. Limits on superconductivityrelated magnetization in Sr_{2}RuO_{4} and PrO_{4}Sb_{12} from scanning SQUID microscopy. Phys. Rev. B 81, 214501 (2010).
 59.
Kirtley, J. R. et al. Upper limit on spontaneous supercurrents in Sr_{2}RuO_{4}. Phys. Rev. B 76, 014526 (2007).
 60.
Curran, P. J. et al. Search for spontaneous edge currents and vortex imaging in Sr_{2}RuO_{4} mesostructures. Phys. Rev. B 89, 144504 (2014).
 61.
Curran, P. J. et al. Vortex imaging and vortex lattice transitions in superconducting Sr_{2}RuO_{4} single crystals. Phys. Rev. B 84, 104507 (2011).
 62.
Huang, W., Taylor, E. & Kallin, C. Vanishing edge currents in nonpwave topological chiral superconductors. Phys. Rev. B 90, 224519 (2014).
 63.
Huang, W., Lederer, S., Taylor, E. & Kallin, C. Nontopological nature of the edge current in a chiral pwave superconductor. Phys. Rev. B 91, 094507 (2015).
 64.
Lederer, S., Huang, W., Taylor, E., Raghu, S. & Kallin, C. Suppression of spontaneous currents in Sr_{2}RuO_{4} by surface disorder. Phys. Rev. B 90, 134521 (2014).
 65.
Scaffidi, T. & Simon, S. H. Large Chern number and edge currents in Sr_{2}RuO_{4}. Phys. Rev. Lett. 115, 087003 (2015).
 66.
Vakaryuk, V. Stability of topological defects in chiral superconductors: London theory. Phys. Rev. B 84, 214524 (2011).
 67.
Kallin, C. & Berlinsky, A. J. Is Sr_{2}RuO_{4} a chiral pwave superconductor? J. Phys. Condens. Matter 21, 164210 (2009).
 68.
Saitoh, K. et al. Inversion symmetry of Josephson current as test of chiral domain wall motion in Sr_{2}RuO_{4}. Phys. Rev. B 92, 100504 (2015).
 69.
Yosida, K. Paramagnetic susceptibility in superconductors. Phys. Rev 110, 769–770 (1958).
 70.
Ishida, K. et al. Spintriplet superconductivity in Sr_{2}RuO_{4} identified by O17 Knight shift. Nature 396, 658–660 (1998).
 71.
Duffy, J. A. et al. Polarizedneutron scattering study of the Cooperpair moment in Sr_{2}RuO_{4}. Phys. Rev. Lett. 85, 5412–5415 (2000).
 72.
Ishida, K. et al. Spin polarization enhanced by spintriplet pairing in Sr_{2}RuO_{4} probed by NMR. Phys. Rev. B 92, 100502 (2015).
 73.
Ishida, K. et al. Ru NMR probe of spin susceptibility in the superconducting state of Sr_{2}RuO_{4}. Phys. Rev. B 63, 060507 (2001).
 74.
Murakawa, H. et al. 101Ru Knight shift measurement of superconducting Sr_{2}RuO_{4} under small magnetic fields parallel to the RuO_{2} plane. J. Phys. Soc. Jpn. 76, 024716 (2007).
 75.
Manago, M., Ishida, K., Mao, Z. & Maeno, Y. Absence of the O 17 Knightshift changes across the firstorder phase transition line in Sr_{2}RuO_{4}. Phys. Rev. B 94, 180507 (2016).
 76.
Gork’ov, L. P. Anisotropy of the upper critical field in exotic superconductors. JETP Lett. 40, 1155–1158 (1984).
 77.
Sigrist, M., Joynt, R. & Rice, T. Behavior of anisotropic superconductors under uniaxialstress. Phys. Rev. B 36, 5186–5198 (1987).
 78.
Yaguchi, H., Akima, T., Mao, Z. Q., Maeno, Y. & Ishiguro, T. Detailed study of the ac susceptibility of Sr_{2}RuO_{4} in oriented magnetic fields. Phys. Rev. B 66, 214514 (2002).
 79.
Mao, Z. Q., Maeno, Y., NishiZaki, S., Akima, T. & Ishiguro, T. Inplane anisotropy of upper critical field in Sr_{2}RuO_{4}4. Phys. Rev. Lett. 84, 991–994 (2000).
 80.
Hicks, C. W. et al. Strong increase of T_{c} of Sr_{2}RuO_{4} under both tensile and compressive strain. Science 344, 283–285 (2014).
 81.
Taniguchi, H., Nishimura, K., Goh, S. K., Yonezawa, S. & Maeno, Y. HigherTc superconducting phase in Sr_{2}RuO_{4} induced by inplane uniaxial pressure. J. Phys. Soc. Jpn. 84, 014707 (2015).
 82.
Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).
 83.
Rastovski, C. et al. Anisotropy of the superconducting state in Sr_{2}RuO_{4}. Phys. Rev. Lett. 111, 087003 (2013).
 84.
Deguchi, K., Tanatar, M. A., Mao, Z. Q., Ishiguro, T. & Maeno, Y. Superconducting double transition and the upper critical field limit of Sr_{2}RuO_{4} in parallel magnetic fields. J. Phys. Soc. Jpn. 71, 2839–2842 (2002).
 85.
Sarma, G. On influence of a uniform exchange field acting on spins of conduction electrons in a superconductor. J. Phys. Chem. Solids 24, 1029–1032 (1963).
 86.
Yonezawa, S., Kajikawa, T. & Maeno, Y. Firstorder superconducting transition of Sr_{2}RuO_{4}. Phys. Rev. Lett. 110, 077003 (2013).
 87.
Yonezawa, S., Kajikawa, T. & Maeno, Y. Specificheat evidence of the firstorder superconducting transition in Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 83, 083706 (2014).
 88.
Kittaka, S. et al. Sharp magnetization jump at the firstorder superconducting transition in Sr_{2}RuO_{4}. Phys. Rev. B 90, 220502 (2014).
 89.
Ramires, A. & Sigrist, M. Identifying detrimental effects for multiorbital superconductivity: application to Sr_{2}RuO_{4}. Phys. Rev. B 94, 104501 (2016).
 90.
Krockenberger, Y. et al. Growth of superconducting Sr_{2}RuO_{4} thin films. Appl. Phys. Lett. 97, 082502 (2010).
 91.
Jin, R. et al. Observation of anomalous temperature dependence of the critical current in Pb/Sr_{2}RuO_{4}/Pb junctions. Phys. Rev. B 59, 4433–4438 (1999).
 92.
Nakamura, T. et al. Topological competition of superconductivity in Pb/Ru/Sr_{2}RuO_{4} junctions. Phys. Rev. B 84, 060512 (2011).
 93.
Anwar, M. S. et al. Anomalous switching in Nb/Ru/Sr_{2}RuO_{4} topological junctions by chiral domain wall motion. Sci. Rep 3, 2480 (2013).
 94.
Kambara, H. et al. Anomalous transport through the pwave superconducting channel in the 3K phase of Sr_{2}RuO_{4}. Phys. Rev. Lett. 101, 267003 (2008).
 95.
Wang, Z. et al. Quasiparticle interference and strong electronmode coupling in the quasionedimensional bands of Sr_{2}RuO_{4}. ArXiv Prepr. ArXiv170102773 (2017).
 96.
Kikugawa, N. et al. Superconducting subphase in the layered perovskite ruthenate Sr_{2}RuO_{4} in a parallel magnetic field. Phys. Rev. B 93, 184513 (2016).
 97.
Maeno, Y. et al. Enhancement of superconductivity of Sr_{2}RuO_{4} to 3 K by embedded metallic microdomains. Phys. Rev. Lett. 81, 3765–3768 (1998).
 98.
Ying, Y. A. et al. Enhanced spintriplet superconductivity near dislocations in Sr_{2}RuO_{4}. Nat. Commun. 4, 2596 (2013).
 99.
Huang, W., Scaffidi, T., Sigrist, M. & Kallin, C. Leggett modes and multiband superconductivity in Sr_{2}RuO_{4}. Phys. Rev. B 94, 064508 (2016).
 100.
Ueno, Y., Yamakage, A., Tanaka, Y. & Sato, M. Symmetryprotected Majorana fermions in topological crystalline superconductors: theory and application to Sr_{2}RuO_{4}. Phys. Rev. Lett. 111, 087002 (2013).
 101.
Nomura, T. & Yamada, K. Detailed investigation of gap structure and specific heat in the pwave superconductor Sr_{2}RuO_{4}. J. Phys. Soc. Jpn. 71, 404–407 (2002).
Acknowledgements
We thank M. Sigrist and A. Ramires for useful discussions on critical field limiting, S. Yonezawa and K. Ishida for discussions on recent developments, and S.A. Kivelson and V. Sunko for critical readings of the manuscript. A.P.M. and C.W.H. acknowledge the support of the Max Planck Society, T.S. acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation and Y.M. acknowledges the support of JSPS KAKENHI Nos. JP15H05852 and JP15K021717.
Author information
Affiliations
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187, Dresden, Germany
 Andrew P. Mackenzie
 & Clifford W. Hicks
Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
 Andrew P. Mackenzie
Department of Physics, University of California, Berkeley, CA, 94720, USA
 Thomas Scaffidi
Department of Physics, Graduate School of Science, Kyoto University, Kyoto, 6068502, Japan
 Yoshiteru Maeno
Authors
Search for Andrew P. Mackenzie in:
Search for Thomas Scaffidi in:
Search for Clifford W. Hicks in:
Search for Yoshiteru Maeno in:
Contributions
A.P.M. drafted the article, with regular discussion and edits from T.S., C.W.H. and Y.M. Most of the data shown comes from the publications being reviewed, but T.S. performed calculations to prepare panels for Figs. 1 and 2, based on the model of ref. 33.
Competing interests
The authors declare that they have no competing financial interests.
Corresponding author
Correspondence to Andrew P. Mackenzie.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.