Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast

Abstract

Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1–OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure–function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MoErs1 is a cytoplastic effector required for the virulence of M. oryzae.
Fig. 2: MoErs1 interacts with OsRD21 in the plasma membrane in vivo.
Fig. 3: MoErs1 functions as a PLCP inhibitor to inhibit the activity of OsRD21.
Fig. 4: The diphenyl ether ester compound inhibits the inhibitory activity of MoErs1.
Fig. 5: Diphenyl ether ester compounds are effective against rice blast.
Fig. 6: A proposed model of MoErs1 function to suppress host immunity.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary files. Bio-reagents are available for research purposes upon request from the corresponding author under a Material Transfer Agreement. The NCBI non-redundant protein sequences (nr) database is available at https://blast.ncbi.nlm.nih.gov/Blast.cgi. The CDS sequence for the MoRES1 gene is available in the NCBI database (accession no. OK562582).

References

  1. Wang, X., Song, K., Li, L. & Chen, L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem. 18, 998–1006 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Dong, S. M. & Ma, W. B. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Curr. Opin. Plant Biol. 62, 102027 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, H., Zheng, X. & Zhang, Z. The Magnaporthe grisea species complex and plant pathogenesis. Mol. Plant Pathol. 17, 796–804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khush, G. S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59, 1–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. D’Avila, L. S., De Filippi, M. C. C. & Cafe-Filho, A. C. Sensitivity of Pyricularia oryzae populations to fungicides over a 26-year time frame in Brazil. Plant Dis. 105, 1771–1780 (2021).

    Article  PubMed  Google Scholar 

  9. Harata, K., Daimon, H. & Okuno, T. Trade-off relation between fungicide sensitivity and melanin biosynthesis in plant pathogenic fungi. Iscience 23, 101660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skamnioti, P. & Gurr, S. J. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 27, 141–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bozkurt, T. O. et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl Acad. Sci. USA 108, 20832–20837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaschani, F. et al. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol. 154, 1794–1804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paulus, J. K. et al. Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proc. Natl Acad. Sci. USA 117, 17409–17417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shindo, T., Misas-Villamil, J. C., Horger, A. C., Song, J. & van der Hoorn, R. A. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE 7, e29317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Misas-Villamil, J. C., van der Hoorn, R. A. & Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 212, 902–907 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Bar-Ziv, A., Levy, Y., Citovsky, V. & Gafni, Y. The tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochem. Biophys. Res. Commun. 460, 525–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernoux, M. et al. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20, 2252–2264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ilyas, M. et al. Functional divergence of two secreted immune proteases of tomato. Curr. Biol. 25, 2300–2306 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Lozano-Torres, J. L. et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc. Natl Acad. Sci. USA 109, 10119–10124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mueller, A. N., Ziemann, S., Treitschke, S., Assmann, D. & Doehlemann, G. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 9, e1003177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rooney, H. C. E. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783–1786 (2005); erratum 310, 54 (2005).

  22. Song, J. et al. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc. Natl Acad. Sci. USA 106, 1654–1659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi, Z. et al. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. New Phytol. 209, 1655–1667 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. J. Proteome Res. 10, 3136–3148 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of Mpg1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Talbot, N. J., McCafferty, H. R. K., Ma, M., Moore, K. & Hamer, J. E. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant Pathol. 50, 179–195 (1997).

    Article  CAS  Google Scholar 

  27. Khang, C. H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–1403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, J. et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206, 1463–1475 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, M. X. et al. Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proc. Natl Acad. Sci. USA 116, 17572–17577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mentlak, T. A. et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hunter, M. S. et al. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nat. Commun. 7, 13388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bendre, A. D., Ramasamy, S. & Suresh, C. G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int. J. Biol. Macromol. 113, 933–943 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boex-Fontvieille, E., Rustgi, S., von Wettstein, D., Reinbothe, S. & Reinbothe, C. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 7303–7308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rustgi, S., Boex-Fontvieille, E., Reinbothe, C., von Wettstein, D. & Reinbothe, S. Serpin1 and water-soluble chlorophyll protein differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, 2212–2217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lampl, N., Alkan, N., Davydov, O. & Fluhr, R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J. 74, 498–510 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gronnier, J. et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife 6, e26404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang, D. Q. et al. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc. Natl Acad. Sci. USA 116, 21274–21284 (2019); erratum 117, 8659 (2020).

  39. Hu, J. et al. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. Mol. Plant 15, 1347–1366 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Bethune, M. T., Strop, P., Tang, Y. Y., Sollid, L. M. & Khosla, C. Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem. Biol. 13, 637–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Comeau, S. R., Gatchell, D. W., Vajda, S. & Camacho, C. J. ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res. 32, W96–W99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Hoorn, R. A. L., Leeuwenburgh, M. A., Bogyo, M., Joosten, M. H. A. J. & Peck, S. C. Activity profiling of papain-like cysteine proteases in plants. Plant Physiol. 135, 1170–1178 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, T. et al. Diaryl ether: a privileged scaffold for drug and agrochemical discovery. J. Agric Food Chem. 68, 9839–9877 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. He, M. et al. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nat. Microbiol. 5, 1565–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, B. et al. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. Plant J. 79, 1009–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lampl, N. et al. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J. Biol. Chem. 285, 13550–13560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Halls, C. E. et al. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis. Plant Sci. 170, 1102–1110 (2006).

    Article  CAS  Google Scholar 

  48. Boex-Fontvieille, E., Rustgi, S., Reinbothe, S. & Reinbothe, C. A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana. J. Exp. Bot. 66, 6119–6135 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Dong, Y. et al. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog. 11, e1004801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huang, J., Si, W. N., Deng, Q. M., Li, P. & Yang, S. H. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet. 15, 45 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liao, J. J. et al. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. Elife 5, e19377 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deb, D., Anderson, R. G., How-Yew-Kin, T., Tyler, B. M. & McDowell, J. M. Conserved RxLR effectors from Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae suppress PAMP- and effector-triggered immunity in diverse plants. Mol. Plant Microbe 31, 374–385 (2018).

    Article  CAS  Google Scholar 

  53. Thatcher, L. F., Gardiner, D. M., Kazan, K. & Manners, J. M. A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol. Plant Microbe Interact. 25, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Xiong, Q. et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol. Plant Microbe Interact. 27, 1379–1389 (2014).

    Article  PubMed  Google Scholar 

  55. Liu, M. et al. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. New Phytol. 230, 720–736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park, C. H. et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24, 4748–4762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the BL17U1 staff at Shanghai Synchrotron Radiation Facility for data collection and processing, and C. Liao at Nanjing Agricultural University for model colouring. This research was supported by the National Key Research and Development Programme of China (2022YFD1700300), the key programme of the Natural Science Foundation of China (NSFC) (32030091), NSFC programme 32172377 and NSFC Youth Program 31901832. Research in P.W.’s lab was supported by the US National Institutes of Health under award numbers AI156254 and AI168867.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and Z.Z. conceived and designed the study. M.L., F.W. and B.H. performed experiments with phenotypic and biochemical assays. M.L., B.H., J.H., Y.D. and W.C. contributed reagents, plant and fungal materials. M.L., F.W., B.H., M.Y., H.Z. and W.X. collected data. M.L., Y.Y., Z.C., X.Z., P.W., W.X. and Z.Z. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Weiman Xing or Zhengguang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–3 and 5–8, and key resources table.

Reporting Summary

Supplementary Table 4

Sequence of MoERS1 gene in various rice blast isolates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, F., He, B. et al. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast. Nat. Plants 10, 618–632 (2024). https://doi.org/10.1038/s41477-024-01642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01642-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing