Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite–host interactions

Abstract

Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host–parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host–parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene losses of four lineages of parasitic plants from Lamiales, Solanales, Santalales and Malpighiales.
Fig. 2: Convergent gene loss among holoparasites and divergent gene loss in hemiparasites.
Fig. 3: Convergent and divergent functional retention/loss in metabolic or gene pathways involved in plastid function, phytohormone biosynthesis and signalling, flowering development and regulation in Balanophora and Sapria.
Fig. 4: Modification of gene family size in parasitic plants.
Fig. 5: mRNA compositions, exchanges and large-scale interactions between Balanophora and host.

Similar content being viewed by others

Data availability

The raw genomic and transcriptomic data, genome assemblies and annotations have been deposited to the China National GeneBank (CNGB) Sequence Archive (CNSA)104 with accession number CNP0003054. The genome assemblies and annotations have also been deposited to the National Genomics Data Center (NGDC) with accession number PRJCA018288. The datasets used for comparative genome analysis are listed in Supplementary Table 1a. The databases used for annotation are listed in Supplementary Table 1q. All supplementary data are available in the figshare repository at https://doi.org/10.6084/m9.figshare.21721358.

References

  1. Nickrent, D. L. Parasitic angiosperms: how often and how many? TAXON 69, 5–27 (2020).

    Article  Google Scholar 

  2. Westwood, J. H., Yoder, J. I., Timko, M. P. & dePamphilis, C. W. The evolution of parasitism in plants. Trends Plant Sci. 15, 227–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Mahesh, H. B. et al. Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant Physiol. 176, 2772–2788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, C.-Q. et al. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. Gigascience https://doi.org/10.1093/gigascience/giy164 (2019).

  5. Kuijt, J. & Hansen, B. in Flowering Plants. Eudicots (eds K. Kubitzki) 193–208 (Springer, 2015).

  6. Kuijt, J. & Dong, W.-X. Surface features of the leaves of Balanophoraceae — a family without stomata? Plant Syst. Evol. 170, 29–35 (1990).

    Article  Google Scholar 

  7. Hsiao, S.-C., Mauseth, J. D. & Ching, I. P.Composite bundles, the host/parasite interface in the holoparasitic angiosperms. Langsdorffia and Balanophora (Balanophoraceae). Am. J. Bot. 82,81–91 (1995).

    Article  Google Scholar 

  8. Thorogood, C. J., Teixeira-Costa, L., Ceccantini, G., Davis, C. & Hiscock, S. J. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. New Phytol. 232, 1159–1167 (2021).

    Article  PubMed  Google Scholar 

  9. Cai, L. et al. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr. Biol. 31, 1002–1011.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hansen, B. The Genus Balanophora, A Taxonomic Monograph (Dansk Botanisk Forening, 1972).

  11. Nikolov, L. A. et al. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Ann. Bot. 114, 233–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pombert, J.-F., Blouin, N. A., Lane, C., Boucias, D. & Keeling, P. J. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet. 10, e1004355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun, G. et al. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. https://doi.org/10.1038/s41467-018-04721-8 (2018).

  14. Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang, Z. et al. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat. Plants 5, 991–1001 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida, S. et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr. Biol. 29, 3041–3052.e44 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, G., LeBlanc, M. L., Wafula, E. K., dePamphilis, C. W. & Westwood, J. H. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345, 808–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Shahid, S. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, N. et al. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 13, 573–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Y. et al. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. Mol. Plant 15, 1384–1399 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  Google Scholar 

  22. Xie, J. et al. Evolutionary origins of pseudogenes and their association with regulatory sequences in plants. Plant Cell 31, 563–578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wicke, S. et al. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc. Natl Acad. Sci. USA 113, 9045–9050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molina, J. et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 31, 793–803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirai, N., Yoshida, R., Todoroki, Y. & Ohigashi, H. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci. Biotechnol. Biochem. 64, 1448–1458 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bittner, F., Oreb, M. & Mendel, R. R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276, 40381–40384 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Jia, K.-P. et al. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol. Plant https://doi.org/10.1016/j.molp.2021.09.008 (2021).

    Article  PubMed  Google Scholar 

  28. Finkelstein, R. Abscisic acid synthesis and response. Arabidopsis Book 11, e0166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duan, K. et al. Genome-wide analysis of the MADS-box gene family in holoparasitic plants (Balanophora subcupularis and Balanophora fungosa var. globosa). Front. Plant Sci. https://doi.org/10.3389/fpls.2022.846697 (2022).

  31. Shen, G. et al. Cuscuta australis (dodder) parasite eavesdrops on the host plants’ FT signals to flower. Proc. Natl Acad. Sci. USA 117, 23125–23130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gedalovich-Shedletzky, E. & Kuijt, J. An ultrastructural study of the tuber strands of Balanophora (Balanophoraceae). 68, 1271–1279 (1990).

  33. Yoshida, S., Cui, S., Ichihashi, Y. & Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67, 643–667 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kong, X., Lu, S., Tian, H. & Ding, Z. WOX5 is shining in the root stem cell niche. Trends Plant Sci. 20, 601–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Brumos, J. et al. An improved recombineering toolset for plants. Plant Cell 32, 100–122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, Q. et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 55, 1072–1079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, W., Guo, Y., Zhang, H., Liu, X. & Guo, L. Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00089 (2020).

  38. Masclaux-Daubresse, C. et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141–1157 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’Brien, J. A. et al. Nitrate transport, sensing, and responses in plants. Mol. Plant 9, 837–856 (2016).

    Article  PubMed  Google Scholar 

  40. Howitt, S. M. & Udvardi, M. K. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta Biomembr. 1465, 152–170 (2000).

    Article  CAS  Google Scholar 

  41. Linka, N. & Weber, A. P. M. Intracellular metabolite transporters in plants. Mol. Plant 3, 21–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Gao, F.-L., Che, X.-X., Yu, F.-H. & Li, J.-M. Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora 251, 62–67 (2019).

    Article  Google Scholar 

  43. Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, Y. et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9, 1667–1670 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Birchler, J. A. & Yang, H. The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 34, 2466–2474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mendonça, A. G., Alves, R. J. & Pereira-Leal, J. B. Loss of genetic redundancy in reductive genome evolution. PLoS Comput. Biol. 7, e1001082 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Steenwyk, J. L. et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 17, e3000255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, X. et al. Comparative plastome analysis of root- and stem-feeding parasites of Santalales untangle the footprints of feeding mode and lifestyle transitions. Genome Biol. Evol. 12, 3663–3676 (2019).

    Article  PubMed Central  Google Scholar 

  50. Wernegreen, J. J. Endosymbiont evolution: predictions from theory and surprises from genomes. Ann. N. Y. Acad. Sci. 1360, 16–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schrader, L. et al. Relaxed selection underlies genome erosion in socially parasitic ant species. Nat. Commun. 12, 2918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson, N. R. & Axtell, M. J. Small RNA warfare: exploring origins and function of trans-species microRNAs from the parasitic plant Cuscuta. Curr. Opin. Plant Biol. 50, 76–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Park, S. Y., Shimizu, K., Brown, J., Aoki, K. & Westwood, J. H. Mobile host mRNAs are translated to protein in the associated parasitic plant Cuscuta campestris. Plants https://doi.org/10.3390/plants11010093 (2021).

  54. Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Albert, M., Axtell, M. J. & Timko, M. P. Mechanisms of resistance and virulence in parasitic plant–host interactions. Plant Physiol. 185, 1282–1291 (2020).

    Article  PubMed Central  Google Scholar 

  56. Su, C. et al. SHR4z, a novel decoy effector from the haustorium of the parasitic weed Striga gesnerioides, suppresses host plant immunity. New Phytol. 226, 891–908 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Vlot, A. C., Dempsey, D. M. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev. Phytopathol. 47, 177–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Radojičić, A., Li, X. & Zhang, Y. Salicylic acid: a double-edged sword for programed cell death in plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01133 (2018).

  59. Zeilmaker, T. et al. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 81, 210–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. van Damme, M., Huibers, R. P., Elberse, J. & Van den Ackerveken, G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 54, 785–793 (2008).

    Article  PubMed  Google Scholar 

  61. Bauer, S. et al. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33, 714–734 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, J., Brader, G., Kariola, T. & Palva, E. T. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46, 477–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl Acad. Sci. USA 107, 18220–18225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, L. et al. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5, e1000301 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Qi, G. et al. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol. Plant 11, 1427–1439 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Xu, Y. et al. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J. 108, 1609–1623 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Kamikawa, R. et al. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. Sci. Adv. 8, eabi5075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA 110, 2898–2903 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hunt, B. G. et al. Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc. Natl Acad. Sci. USA 108, 15936–15941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma, V. et al. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat. Commun. 9, 1215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huelsmann, M. et al. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci. Adv. 5, eaaw6671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Helsen, J. et al. Gene loss predictably drives evolutionary adaptation. Mol. Biol. Evol. 37, 2989–3002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Monroe, J. G., McKay, J. K., Weigel, D. & Flood, P. J. The population genomics of adaptive loss of function. Heredity 126, 383–395 (2021).

    Article  PubMed  Google Scholar 

  75. Murray, A. W. Can gene-inactivating mutations lead to evolutionary novelty? Curr. Biol. 30, R465–R471 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, Y.-C. & Guo, Y.-L. Less is more, natural loss-of-function mutation is a strategy for adaptation. Plant Commun. 1, 100103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Searcy, D. G. & MacInnis, A. J. Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24, 796–806 (1970).

    Article  PubMed  Google Scholar 

  78. dePamphilis, C. W. in Parasitic Plants (eds Press, M. C. & Graves, J. D.) 176–205 (Chapman and Hall, 1995).

  79. Lyko, P. & Wicke, S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. Plant Physiol. 186, 1412–1423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2019).

    Article  Google Scholar 

  81. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).

    Article  Google Scholar 

  83. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinform. 48, 4.11.1–4.11.39 (2014).

    Article  Google Scholar 

  92. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zeng, L. et al. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214, 1338–1354 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  Google Scholar 

  99. Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541–i548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Grau-Bové, X. & Sebé-Pedrós, A. Orthology clusters from gene trees with Possvm. Mol. Biol. Evol. 38, 5204–5208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Guo, X. et al. CNSA: a data repository for archiving omics data. Database https://doi.org/10.1093/database/baaa055 (2020).

Download references

Acknowledgements

We thank Y. Guo (Chinese Academy of Sciences), X. Li (University of British Columbia), C. Davis (Harvard University), S. Wanke (Technische Universität Dresden) and S. Stefanović (University of Toronto) for discussion. This project was supported by the Shenzhen Municipal Government of China (No. JCYJ20160331150739027 to X.C., and KCXFZ20201221173013035 to H.L.), the Key Laboratory of Genomics, Ministry of Agriculture, BGI‐Shenzhen, Shenzhen, China, and the China National GeneBank (CNGB; https://www.cngb.org/). This work is part of the 10KP project (https://db.cngb.org/10kp/).

Author information

Authors and Affiliations

Authors

Contributions

H.L. and X.C. led and designed the project. H.L., S.W.G. and X.C. conceived the study. X.C., D.F., S.Yang., K.D., H.F., C.W., Y.B., R.Y., S.P., W.Z. and Q.Y. contributed to sample preparation. C.W. constructed libraries for sequencing. D.F. and S.Yang. performed the genome assembly. X.C., D.F., Y.X., S.Yang., K.D., H.F., M.L., Y.L., F.W., W.M., X.G., D.S., Y.C., Y.F., S.K.S. and S.P. performed annotation and comparative genomic analyses. S.Yoshida. performed the gene family expansion and contraction analysis, and HGT analysis. X.C. and D.F. wrote the original draft manuscript. Y.X., S.K.S., Y.W., Z.-J.L., X.L., X.X., H.Y., J.W., S.Yoshida., S.W.G. and H.L. revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sean W. Graham or Huan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Huiting Zhang, Liming Cai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Principal component analysis (PCA) based on gene families among parasitic and autotrophic plants based on 10,277 CRFs.

Endoparasitic, holoparasitic, hemiparasitic, and autotrophic plants are represented by blue hexagons, red rectangles, orange squares and black circles, respectively (all species are listed in Supplementary Table 1a, the data used for PCA is from Supplementary Table 1o).

Extended Data Fig. 2 The biosynthesis pathway of carotenoid and ABA in Balanophora.

The major ABA biosynthesis pathway through ZEP is colored in blue, and the alternative ZEP-independent pathway is colored in orange. Gene products in red are absent; black are present; and skyblue are unknown (see also in Supplementary Table 3s and 5l). AAO3, abscisic aldehyde oxidase 3; AO, Aldehyde Oxidase; ABA2, ABA deficient 2; ABA3, ABA deficient 3; ABA4, ABA deficient 4; BCH, beta carotene hydroxylase; CCD, carotenoid cleavage dioxygenase; CRTISO, carotenoid isomerase; CYP97A3, cytochrome P450 97A3; CYP97C1, cytochrome P450 97C1; GA3P, glyceraldehyde-3-phosphate; GGPP, geranylgeranyl pyrophosphate; LCYB, lycopene beta cyclase; LUT, lycopene epsilon cyclase; NCED, 9-cis-epoxycarotenoid dioxygenase; NSY, neoxanthin synthase; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; ROS, reactive oxygen species; SDR, short chain dehydrogenase; VDE, violaxanthin de-epoxidase; ZDS, z-carotene desaturase; ZEP, zeaxanthin epoxidase; Z-ISO, ζ carotene isomerase.

Extended Data Fig. 3 Hormone interaction between Balanophora and host.

a. The ABA, ABA glucosyl ester (ABA-GE), concentration in inflorescence, tuber of Balanophora, and host root. The box plot shows first quartile, median, and third quartile (n = 3 biologically independent samples). b. The expression levels of ABA signaling genes from Balanophora in different tissues and growing stages, genes in dotted box show ABA signaling and maker genes upregulated in inflorescence. c. The expression of host ABA biosynthesis genes, genes in dotted box are ABA biosynthesis genes highly expressed in tubers. d. The SA, SA 2-O-β-D-Glucoside (SAG) concentration in inflorescence, tuber of Balanophora, and host root. Box plot shows first quartile, median, and third quartile (n = 3 biologically independent samples). e. The expression of salicylic acid biosynthesis, metabolism and signaling genes from Balanophora; dotted box represents SA metabolism genes upregulated in JU1. f. The expression of host SA biosynthesis genes, genes in dotted box are SA biosynthesis genes highly expressed in tubers. Tissue abbreviations are listed in Supplementary Fig. 1d–h and Methods section. In B-C, and E-F, each row represents the expression of each gene in a different sample, and each column represents the expression of genes in each sample. The upper tree represents a cluster analysis for different samples of different groups and stages, and the left tree represents the cluster analysis for different genes from different samples. g. Putative models of hormone interactions between Balanophora and the host. Cells walls from Balanophora or host are colored in orange vs. green respectively, in tissues including the inflorescence from Balanophora (IF), root from the host (RO), parasite-root junction (JU), and chimeric tuber containing both cells of Balanophora and host (TU). Genes from Balanophora or host that are upregulated in corresponding tissues are colored in red vs. blue. Hormone biosynthesis, metabolism and signaling genes are pentagons, rectangles, and ovals, respectively. Small circles with different colors are different hormones.

Extended Data Fig. 4 The violin plot showing the distribution of nonsynonymous substitution rate (dN), synonymous substitution rate (dS), and the seletion pressure ω(dN/dS) for 2,729 orthologs in 21 species.

The grey dots represent the observed values for each species. The box plot in each violin plot shows first quartile, median, and third quartile of the dN, dS or dN/dS value from 2,729 orthologs for each species. The black circles indicate the outliers. The colors of species names indicate different types of parasitism, as in Extended Data Fig. 1 and the details of species are described in Supplementary Table 1a.

Extended Data Fig. 5 Selection intensity shift in parasitic plants.

a. Distribution of selection intensity (k value) for four lineages of parasitic plants and their autotrophic relatives across 2,729 orthologs retained in all species analysed here. Selection intensity is presented according to the k parameter in RELAX using general descriptive RELAX model. The box plot in each violin plot shows first quartile, median, and third quartile of the k value from 2,729 orthologs for each species. In addition to Arabidopsis and Vitis, four lineages of parasitic plants and their close relatives are included. The colors of species show different lifestyles of parasitism as Extended Data Fig. 1 and details of species in Supplementary Table 1a. b. Selection changes per branch are colour-coded according to the selection strength parameter k as in A. Low k (<1, red) indicates relaxation of selection, whereas high k (>1, blue) suggests selection intensification. c. The violin distribution of selection intensity according to different gene family sizes for three parasitic plants in Santalales (test species). We chose those common multiple/single gene families shared in autotrophs (cluster 3, and cluster 1 in Fig. 4a, respectively), three categories are compared between each other including: (i) remaining multigene families in each test species, respectively; (ii) those multigene families in autotrophs but change to singleton in test species; (iii) remaining single gene families in autotrophs and also in reference species. The box plot in each violin plot shows first quartile, median, and third quartile. The numbers of gene family for three categories in each species are listed. The two-sided Wilcoxon signed rank test was performed for pair of two categories, and the p values were listed.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–22.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–9.

Supplementary Data 1

Supplementary Data 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Fang, D., Xu, Y. et al. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite–host interactions. Nat. Plants 9, 1627–1642 (2023). https://doi.org/10.1038/s41477-023-01517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01517-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research