Abstract
Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host–parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host–parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The raw genomic and transcriptomic data, genome assemblies and annotations have been deposited to the China National GeneBank (CNGB) Sequence Archive (CNSA)104 with accession number CNP0003054. The genome assemblies and annotations have also been deposited to the National Genomics Data Center (NGDC) with accession number PRJCA018288. The datasets used for comparative genome analysis are listed in Supplementary Table 1a. The databases used for annotation are listed in Supplementary Table 1q. All supplementary data are available in the figshare repository at https://doi.org/10.6084/m9.figshare.21721358.
References
Nickrent, D. L. Parasitic angiosperms: how often and how many? TAXON 69, 5–27 (2020).
Westwood, J. H., Yoder, J. I., Timko, M. P. & dePamphilis, C. W. The evolution of parasitism in plants. Trends Plant Sci. 15, 227–235 (2010).
Mahesh, H. B. et al. Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant Physiol. 176, 2772–2788 (2018).
Xu, C.-Q. et al. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. Gigascience https://doi.org/10.1093/gigascience/giy164 (2019).
Kuijt, J. & Hansen, B. in Flowering Plants. Eudicots (eds K. Kubitzki) 193–208 (Springer, 2015).
Kuijt, J. & Dong, W.-X. Surface features of the leaves of Balanophoraceae — a family without stomata? Plant Syst. Evol. 170, 29–35 (1990).
Hsiao, S.-C., Mauseth, J. D. & Ching, I. P.Composite bundles, the host/parasite interface in the holoparasitic angiosperms. Langsdorffia and Balanophora (Balanophoraceae). Am. J. Bot. 82,81–91 (1995).
Thorogood, C. J., Teixeira-Costa, L., Ceccantini, G., Davis, C. & Hiscock, S. J. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. New Phytol. 232, 1159–1167 (2021).
Cai, L. et al. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr. Biol. 31, 1002–1011.e9 (2021).
Hansen, B. The Genus Balanophora, A Taxonomic Monograph (Dansk Botanisk Forening, 1972).
Nikolov, L. A. et al. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Ann. Bot. 114, 233–242 (2014).
Pombert, J.-F., Blouin, N. A., Lane, C., Boucias, D. & Keeling, P. J. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet. 10, e1004355 (2014).
Sun, G. et al. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. https://doi.org/10.1038/s41467-018-04721-8 (2018).
Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).
Yang, Z. et al. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat. Plants 5, 991–1001 (2019).
Yoshida, S. et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr. Biol. 29, 3041–3052.e44 (2019).
Kim, G., LeBlanc, M. L., Wafula, E. K., dePamphilis, C. W. & Westwood, J. H. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345, 808–811 (2014).
Shahid, S. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).
Liu, N. et al. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 13, 573–585 (2020).
Xu, Y. et al. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. Mol. Plant 15, 1384–1399 (2022).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Xie, J. et al. Evolutionary origins of pseudogenes and their association with regulatory sequences in plants. Plant Cell 31, 563–578 (2019).
Wicke, S. et al. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc. Natl Acad. Sci. USA 113, 9045–9050 (2016).
Molina, J. et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 31, 793–803 (2014).
Hirai, N., Yoshida, R., Todoroki, Y. & Ohigashi, H. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci. Biotechnol. Biochem. 64, 1448–1458 (2000).
Bittner, F., Oreb, M. & Mendel, R. R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276, 40381–40384 (2001).
Jia, K.-P. et al. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol. Plant https://doi.org/10.1016/j.molp.2021.09.008 (2021).
Finkelstein, R. Abscisic acid synthesis and response. Arabidopsis Book 11, e0166 (2013).
Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2015).
Duan, K. et al. Genome-wide analysis of the MADS-box gene family in holoparasitic plants (Balanophora subcupularis and Balanophora fungosa var. globosa). Front. Plant Sci. https://doi.org/10.3389/fpls.2022.846697 (2022).
Shen, G. et al. Cuscuta australis (dodder) parasite eavesdrops on the host plants’ FT signals to flower. Proc. Natl Acad. Sci. USA 117, 23125–23130 (2020).
Gedalovich-Shedletzky, E. & Kuijt, J. An ultrastructural study of the tuber strands of Balanophora (Balanophoraceae). 68, 1271–1279 (1990).
Yoshida, S., Cui, S., Ichihashi, Y. & Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67, 643–667 (2016).
Kong, X., Lu, S., Tian, H. & Ding, Z. WOX5 is shining in the root stem cell niche. Trends Plant Sci. 20, 601–603 (2015).
Brumos, J. et al. An improved recombineering toolset for plants. Plant Cell 32, 100–122 (2019).
Chen, Q. et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 55, 1072–1079 (2014).
Chang, W., Guo, Y., Zhang, H., Liu, X. & Guo, L. Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00089 (2020).
Masclaux-Daubresse, C. et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141–1157 (2010).
O’Brien, J. A. et al. Nitrate transport, sensing, and responses in plants. Mol. Plant 9, 837–856 (2016).
Howitt, S. M. & Udvardi, M. K. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta Biomembr. 1465, 152–170 (2000).
Linka, N. & Weber, A. P. M. Intracellular metabolite transporters in plants. Mol. Plant 3, 21–53 (2010).
Gao, F.-L., Che, X.-X., Yu, F.-H. & Li, J.-M. Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora 251, 62–67 (2019).
Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2016).
Zheng, Y. et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9, 1667–1670 (2016).
Birchler, J. A. & Yang, H. The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 34, 2466–2474 (2022).
Mendonça, A. G., Alves, R. J. & Pereira-Leal, J. B. Loss of genetic redundancy in reductive genome evolution. PLoS Comput. Biol. 7, e1001082 (2011).
Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).
Steenwyk, J. L. et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 17, e3000255 (2019).
Chen, X. et al. Comparative plastome analysis of root- and stem-feeding parasites of Santalales untangle the footprints of feeding mode and lifestyle transitions. Genome Biol. Evol. 12, 3663–3676 (2019).
Wernegreen, J. J. Endosymbiont evolution: predictions from theory and surprises from genomes. Ann. N. Y. Acad. Sci. 1360, 16–35 (2015).
Schrader, L. et al. Relaxed selection underlies genome erosion in socially parasitic ant species. Nat. Commun. 12, 2918 (2021).
Johnson, N. R. & Axtell, M. J. Small RNA warfare: exploring origins and function of trans-species microRNAs from the parasitic plant Cuscuta. Curr. Opin. Plant Biol. 50, 76–81 (2019).
Park, S. Y., Shimizu, K., Brown, J., Aoki, K. & Westwood, J. H. Mobile host mRNAs are translated to protein in the associated parasitic plant Cuscuta campestris. Plants https://doi.org/10.3390/plants11010093 (2021).
Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).
Albert, M., Axtell, M. J. & Timko, M. P. Mechanisms of resistance and virulence in parasitic plant–host interactions. Plant Physiol. 185, 1282–1291 (2020).
Su, C. et al. SHR4z, a novel decoy effector from the haustorium of the parasitic weed Striga gesnerioides, suppresses host plant immunity. New Phytol. 226, 891–908 (2020).
Vlot, A. C., Dempsey, D. M. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev. Phytopathol. 47, 177–206 (2009).
Radojičić, A., Li, X. & Zhang, Y. Salicylic acid: a double-edged sword for programed cell death in plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01133 (2018).
Zeilmaker, T. et al. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 81, 210–222 (2015).
van Damme, M., Huibers, R. P., Elberse, J. & Van den Ackerveken, G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 54, 785–793 (2008).
Bauer, S. et al. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33, 714–734 (2021).
Li, J., Brader, G., Kariola, T. & Palva, E. T. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46, 477–491 (2006).
Zhang, Y. et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl Acad. Sci. USA 107, 18220–18225 (2010).
Wang, L. et al. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5, e1000301 (2009).
Qi, G. et al. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol. Plant 11, 1427–1439 (2018).
Xu, Y. et al. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J. 108, 1609–1623 (2021).
Kamikawa, R. et al. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. Sci. Adv. 8, eabi5075 (2022).
Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).
De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA 110, 2898–2903 (2013).
Hunt, B. G. et al. Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc. Natl Acad. Sci. USA 108, 15936–15941 (2011).
Sharma, V. et al. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat. Commun. 9, 1215 (2018).
Huelsmann, M. et al. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci. Adv. 5, eaaw6671 (2019).
Helsen, J. et al. Gene loss predictably drives evolutionary adaptation. Mol. Biol. Evol. 37, 2989–3002 (2020).
Monroe, J. G., McKay, J. K., Weigel, D. & Flood, P. J. The population genomics of adaptive loss of function. Heredity 126, 383–395 (2021).
Murray, A. W. Can gene-inactivating mutations lead to evolutionary novelty? Curr. Biol. 30, R465–R471 (2020).
Xu, Y.-C. & Guo, Y.-L. Less is more, natural loss-of-function mutation is a strategy for adaptation. Plant Commun. 1, 100103 (2020).
Searcy, D. G. & MacInnis, A. J. Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24, 796–806 (1970).
dePamphilis, C. W. in Parasitic Plants (eds Press, M. C. & Graves, J. D.) 176–205 (Chapman and Hall, 1995).
Lyko, P. & Wicke, S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. Plant Physiol. 186, 1412–1423 (2021).
Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2019).
Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).
UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).
Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).
Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).
Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinform. 48, 4.11.1–4.11.39 (2014).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Zeng, L. et al. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214, 1338–1354 (2017).
Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).
Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541–i548 (2014).
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
Grau-Bové, X. & Sebé-Pedrós, A. Orthology clusters from gene trees with Possvm. Mol. Biol. Evol. 38, 5204–5208 (2021).
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).
Guo, X. et al. CNSA: a data repository for archiving omics data. Database https://doi.org/10.1093/database/baaa055 (2020).
Acknowledgements
We thank Y. Guo (Chinese Academy of Sciences), X. Li (University of British Columbia), C. Davis (Harvard University), S. Wanke (Technische Universität Dresden) and S. Stefanović (University of Toronto) for discussion. This project was supported by the Shenzhen Municipal Government of China (No. JCYJ20160331150739027 to X.C., and KCXFZ20201221173013035 to H.L.), the Key Laboratory of Genomics, Ministry of Agriculture, BGI‐Shenzhen, Shenzhen, China, and the China National GeneBank (CNGB; https://www.cngb.org/). This work is part of the 10KP project (https://db.cngb.org/10kp/).
Author information
Authors and Affiliations
Contributions
H.L. and X.C. led and designed the project. H.L., S.W.G. and X.C. conceived the study. X.C., D.F., S.Yang., K.D., H.F., C.W., Y.B., R.Y., S.P., W.Z. and Q.Y. contributed to sample preparation. C.W. constructed libraries for sequencing. D.F. and S.Yang. performed the genome assembly. X.C., D.F., Y.X., S.Yang., K.D., H.F., M.L., Y.L., F.W., W.M., X.G., D.S., Y.C., Y.F., S.K.S. and S.P. performed annotation and comparative genomic analyses. S.Yoshida. performed the gene family expansion and contraction analysis, and HGT analysis. X.C. and D.F. wrote the original draft manuscript. Y.X., S.K.S., Y.W., Z.-J.L., X.L., X.X., H.Y., J.W., S.Yoshida., S.W.G. and H.L. revised and edited the manuscript. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Plants thanks Huiting Zhang, Liming Cai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 2 The biosynthesis pathway of carotenoid and ABA in Balanophora.
The major ABA biosynthesis pathway through ZEP is colored in blue, and the alternative ZEP-independent pathway is colored in orange. Gene products in red are absent; black are present; and skyblue are unknown (see also in Supplementary Table 3s and 5l). AAO3, abscisic aldehyde oxidase 3; AO, Aldehyde Oxidase; ABA2, ABA deficient 2; ABA3, ABA deficient 3; ABA4, ABA deficient 4; BCH, beta carotene hydroxylase; CCD, carotenoid cleavage dioxygenase; CRTISO, carotenoid isomerase; CYP97A3, cytochrome P450 97A3; CYP97C1, cytochrome P450 97C1; GA3P, glyceraldehyde-3-phosphate; GGPP, geranylgeranyl pyrophosphate; LCYB, lycopene beta cyclase; LUT, lycopene epsilon cyclase; NCED, 9-cis-epoxycarotenoid dioxygenase; NSY, neoxanthin synthase; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; ROS, reactive oxygen species; SDR, short chain dehydrogenase; VDE, violaxanthin de-epoxidase; ZDS, z-carotene desaturase; ZEP, zeaxanthin epoxidase; Z-ISO, ζ carotene isomerase.
Extended Data Fig. 3 Hormone interaction between Balanophora and host.
a. The ABA, ABA glucosyl ester (ABA-GE), concentration in inflorescence, tuber of Balanophora, and host root. The box plot shows first quartile, median, and third quartile (n = 3 biologically independent samples). b. The expression levels of ABA signaling genes from Balanophora in different tissues and growing stages, genes in dotted box show ABA signaling and maker genes upregulated in inflorescence. c. The expression of host ABA biosynthesis genes, genes in dotted box are ABA biosynthesis genes highly expressed in tubers. d. The SA, SA 2-O-β-D-Glucoside (SAG) concentration in inflorescence, tuber of Balanophora, and host root. Box plot shows first quartile, median, and third quartile (n = 3 biologically independent samples). e. The expression of salicylic acid biosynthesis, metabolism and signaling genes from Balanophora; dotted box represents SA metabolism genes upregulated in JU1. f. The expression of host SA biosynthesis genes, genes in dotted box are SA biosynthesis genes highly expressed in tubers. Tissue abbreviations are listed in Supplementary Fig. 1d–h and Methods section. In B-C, and E-F, each row represents the expression of each gene in a different sample, and each column represents the expression of genes in each sample. The upper tree represents a cluster analysis for different samples of different groups and stages, and the left tree represents the cluster analysis for different genes from different samples. g. Putative models of hormone interactions between Balanophora and the host. Cells walls from Balanophora or host are colored in orange vs. green respectively, in tissues including the inflorescence from Balanophora (IF), root from the host (RO), parasite-root junction (JU), and chimeric tuber containing both cells of Balanophora and host (TU). Genes from Balanophora or host that are upregulated in corresponding tissues are colored in red vs. blue. Hormone biosynthesis, metabolism and signaling genes are pentagons, rectangles, and ovals, respectively. Small circles with different colors are different hormones.
Extended Data Fig. 4 The violin plot showing the distribution of nonsynonymous substitution rate (dN), synonymous substitution rate (dS), and the seletion pressure ω(dN/dS) for 2,729 orthologs in 21 species.
The grey dots represent the observed values for each species. The box plot in each violin plot shows first quartile, median, and third quartile of the dN, dS or dN/dS value from 2,729 orthologs for each species. The black circles indicate the outliers. The colors of species names indicate different types of parasitism, as in Extended Data Fig. 1 and the details of species are described in Supplementary Table 1a.
Extended Data Fig. 5 Selection intensity shift in parasitic plants.
a. Distribution of selection intensity (k value) for four lineages of parasitic plants and their autotrophic relatives across 2,729 orthologs retained in all species analysed here. Selection intensity is presented according to the k parameter in RELAX using general descriptive RELAX model. The box plot in each violin plot shows first quartile, median, and third quartile of the k value from 2,729 orthologs for each species. In addition to Arabidopsis and Vitis, four lineages of parasitic plants and their close relatives are included. The colors of species show different lifestyles of parasitism as Extended Data Fig. 1 and details of species in Supplementary Table 1a. b. Selection changes per branch are colour-coded according to the selection strength parameter k as in A. Low k (<1, red) indicates relaxation of selection, whereas high k (>1, blue) suggests selection intensification. c. The violin distribution of selection intensity according to different gene family sizes for three parasitic plants in Santalales (test species). We chose those common multiple/single gene families shared in autotrophs (cluster 3, and cluster 1 in Fig. 4a, respectively), three categories are compared between each other including: (i) remaining multigene families in each test species, respectively; (ii) those multigene families in autotrophs but change to singleton in test species; (iii) remaining single gene families in autotrophs and also in reference species. The box plot in each violin plot shows first quartile, median, and third quartile. The numbers of gene family for three categories in each species are listed. The two-sided Wilcoxon signed rank test was performed for pair of two categories, and the p values were listed.
Supplementary information
Supplementary Information
Supplementary Note and Figs. 1–22.
Supplementary Table 1
Supplementary Tables 1–9.
Supplementary Data 1
Supplementary Data 1–6.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, X., Fang, D., Xu, Y. et al. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite–host interactions. Nat. Plants 9, 1627–1642 (2023). https://doi.org/10.1038/s41477-023-01517-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41477-023-01517-7