Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Plant adenylate cyclases have come full circle

Abstract

In bacteria, fungi and animals, 3′-5′-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3′,5′-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3′,5′-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACs moonlighting in proteins with diverse domain architecture.
Fig. 2: Plant ACs act as molecular tuners in localized signalling environments.
Fig. 3: Plant ACs regulate key biological processes.

Similar content being viewed by others

Data availability

All relevant data are included in this article and its Supplementary Information.

References

  1. Gancedo, J. M. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol. Rev. Camb. Phil. Soc. 88, 645–668 (2013).

    Article  Google Scholar 

  2. Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research—still expanding after half a century. Nat. Rev. Mol. Cell Biol. 3, 710–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Al-Younis, I. et al. The Arabidopsis thaliana K+-uptake permease 5 (AtKUP5) contains a functional cytosolic adenylate cyclase essential for K+ transport. Front. Plant Sci. 9, 1645 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ordoñez, N. M. et al. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots. FEBS Lett. 588, 1008–1015 (2014).

    Article  PubMed  Google Scholar 

  5. Maathuis, F. J. & Sanders, D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol. 127, 1617–1625 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, W. W., Luan, S., Schreiber, S. L. & Assmann, S. M. Cyclic-AMP stimulates K+ channel activity in mesophyll cells of Vicia faba L. Plant Physiol. 106, 957–961 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ehsan, H. et al. Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett. 422, 165–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Moutinho, A., Hussey, P. J., Trewavas, A. J. & Malho, R. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc. Natl Acad. Sci. USA 98, 10481–10486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin, X. C. & Wu, W. H. Involvement of cyclic AMP in ABA- and Ca2+-mediated signal transduction of stomatal regulation in Vicia faba. Plant Cell Physiol. 40, 1127–1133 (1999).

    Article  CAS  Google Scholar 

  10. Alqurashi, M., Gehring, C. & Marondedze, C. Changes in the Arabidopsis thaliana proteome implicate cAMP in biotic and abiotic stress responses and changes in energy metabolism. Int. J. Mol. Sci. 17, 852 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bolwell, G. P. Cyclic-AMP, the reluctant messenger in plants. Trends Biochem. Sci. 20, 492–495 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Trewavas, A. J. Plant cyclic AMP comes in from the cold. Nature 390, 657–658 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Gehring, C. Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun. Signal. 8, 15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Assmann, S. M. Cyclic AMP as a second messenger in higher plants (status and future prospects). Plant Physiol. 108, 885–889 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gehring, C. & Turek, I. S. Cyclic nucleotide monophosphates and their cyclases in plant signaling. Front. Plant Sci. 8, 1704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qi, Z. et al. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc. Natl Acad. Sci. USA 107, 21193–21198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashton, A. R. Guanylyl cyclase activity in plants? Proc. Natl Acad. Sci. USA 108, E96 (2011). author reply E97-E98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ichikawa, T. et al. Identification and role of adenylyl cyclase in auxin signalling in higher plants. Nature 390, 698–701 (1997); retraction 396, 390 (1998).

  19. Qi, L. et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611, 133–138 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Wong, A., Tian, X., Yang, Y. & Gehring, C. Adenylate cyclase activity of TIR1/AFB links cAMP to auxin-dependent responses. Mol. Plant 15, 1838–1840 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Blanco, E., Fortunato, S., Viggiano, L. & de Pinto, M. C. Cyclic AMP: a polyhedral signalling molecule in plants. Int. J. Mol. Sci. 21, 4862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, R. et al. Molecular targets and biological functions of cAMP signaling in Arabidopsis. Biomolecules 11, 688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 10, 27–38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. D’Souza, C. A. & Heitman, J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol. Rev. 25, 349–364 (2001).

    Article  PubMed  Google Scholar 

  25. Khannpnavar, B., Mehta, V., Qi, C. & Korkhov, V. Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Curr. Opin. Struct. Biol. 63, 34–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Muñoz-Llancao, P. et al. Exchange protein directly activated by cAMP (EPAC) regulates neuronal polarization through Rap1B. J. Neurosci. 35, 11315–11329 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. White, D. S. et al. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 595, 606–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leng, Q., Mercier, R. W., Yao, W. & Berkowitz, G. A. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 121, 753–761 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talke, I. N., Blaudez, D., Maathuis, F. J. & Sanders, D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci. 8, 286–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Dietrich, P., Moeder, W. & Yoshioka, K. Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiol. 184, 27–38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, J. Y., Falcone, J. L., Curci, S. & Hofer, A. M. Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 64, 47–56 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hall, K. A. & Galsky, A. G. The action of cyclic-AMP on GA3 controlled responses IV. Characteristics of the promotion of seed germination in Lactuca sative variety ‘Spartan Lake’ by gibberellic acid and cyclic 3,5′-adenosine monophosphate. Plant Cell Physiol. 14, 565–571 (1973).

    CAS  Google Scholar 

  34. Wood, H. N. & Braun, A. C. 8-Bromoadenosine 3′:5′-cyclic monophosphate as a promoter of cell division in excised tobacco pith parenchyma tissue. Proc. Natl Acad. Sci. USA 70, 447–450 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salomon, D. & Mascarenhas, J. P. Auxin-induced synthesis of cyclic 3′,5′-adenosine monophosphate in Avena coleoptiles. Life Sci. II 10, 879–885 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, M. et al. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. J. Exp. Bot. 67, 809–819 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Sabetta, W. et al. Cyclic AMP deficiency negatively affects cell growth and enhances stress-related responses in tobacco bright yellow-2 cells. Plant Mol. Biol. 90, 467–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Rast, D., Skřivanová, R. & Bachofen, R. Replacement of light by dibutyryl-cAMP and cAMP in betacyanin synthesis. Phytochemistry 12, 2669–2672 (1973).

    Article  CAS  Google Scholar 

  39. Cooke, C. J., Smith, C. J., Walton, T. J. & Newton, R. P. Evidence that cyclic AMP is involved in the hypersensitive response of Medicago sativa to a fungal elicitor. Phytochemistry 35, 889–895 (1994).

    Article  CAS  Google Scholar 

  40. Sabetta, W. et al. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. Plant J. 98, 590–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, J., Fan, L. W. & Wu, W. H. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res. 15, 585–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Gao, F. et al. A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J. 70, 1056–1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Thomas, L., Marondedze, C., Ederli, L., Pasqualini, S. & Gehring, C. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. J. Proteom. 83, 47–59 (2013).

    Article  CAS  Google Scholar 

  44. Paradiso, A. et al. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. Plant Cell Environ. 43, 2727–2742 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Reggiani, R. Alteration of levels of cyclic nucleotides in response to anaerobiosis in rice seedlings. Plant Cell Physiol. 38, 740–742 (1997).

    Article  CAS  Google Scholar 

  46. Newton, R. P., Roef, L., Witters, E. & Van Onckelen, H. Tansley review no. 106: cyclic nucleotides in higher plants: the enduring paradox. N. Phytol. 143, 427–455 (1999).

    Article  CAS  Google Scholar 

  47. Brown, E. G. & Newton, R. P. Cyclic AMP and higher plants. Phytochemistry 20, 2453–2463 (1981).

    Article  CAS  Google Scholar 

  48. Ehrhardt, D. W., Atkinson, E. M. & Long, S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256, 998–1000 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Irving, H. R., Cahill, D. M. & Gehring, C. Moonlighting proteins and their role in the control of signaling microenvironments, as exemplified by cGMP and phytosulfokine receptor 1 (PSKR1). Front. Plant Sci. 9, 415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaccolo, M., Zerio, A. & Lobo, M. J. Subcellular organization of the cAMP signaling pathway. Pharmacol. Rev. 73, 278–309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Newton, R. P. Qualitative and quantitative MS analysis of cyclic nucleotides and related enzymes. Biochem. Soc. Trans. 24, 938–943 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Wheeler, J. I. et al. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. Plant J. 91, 590–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Newton, R. P. et al. Identification of cyclic-nucleotide constituents of meristematic and non-meristematic tissue of Pisum sativum roots. Phytochemistry 28, 2243–2254 (1989).

    Article  CAS  Google Scholar 

  54. Hartwig, C. et al. cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: high cCMP and cUMP levels in astrocytes. Neurosci. Lett. 579, 183–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Miras-Moreno, B., Zhang, L., Senizza, B. & Lucini, L. A metabolomics insight into the cyclic nucleotide monophosphate signaling cascade in tomato under non-stress and salinity conditions. Plant Sci. 309, 110955 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Marondedze, C., Wong, A., Thomas, L., Irving, H. & Gehring, C. Cyclic nucleotide monophosphates in plants and plant signaling. Handb. Exp. Pharmacol. 238, 87–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Seifert, R. & Schirmer, B. cCMP and cUMP come into the spotlight, finally. Trends Biochem. Sci. 47, 461–463 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Pacini, B. et al. Adenylyl cyclase activity in roots of Pisum sativum. Phytochemistry 34, 899–903 (1993).

    Article  CAS  Google Scholar 

  59. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  60. Wong, A., Tian, X., Gehring, C. & Marondedze, C. Discovery of novel functional centers with rationally designed amino acid motifs. Comput. Struct. Biotechnol. J. 16, 70–76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, Y. S., Marmorstein, L. Y. & Marmorstein, A. D. Soluble adenylyl cyclase in the eye. Biochim. Biophys. Acta 1842, 2579–2583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ludidi, N. & Gehring, C. Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J. Biol. Chem. 278, 6490–6494 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Kwezi, L. et al. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J. Biol. Chem. 286, 22580–22588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Turek, I. & Gehring, C. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Mol. Biol. 91, 275–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Muleya, V. et al. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun. Signal. 12, 60 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tucker, C. L., Hurley, J. H., Miller, T. R. & Hurley, J. B. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc. Natl Acad. Sci. USA 95, 5993–5997 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roelofs, J., Meima, M., Schaap, P. & Van Haastert, P. J. The Dictyostelium homologue of mammalian soluble adenylyl cyclase encodes a guanylyl cyclase. EMBO J. 20, 4341–4348 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruzvidzo, O. et al. Recombinant expression and functional testing of candidate adenylate cyclase domains. Methods Mol. Biol. 1016, 13–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Al-Younis, I., Wong, A. & Gehring, C. The Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett. 589, 3848–3852 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Sehlabane, K. et al. A putative protein with no known function in Arabidopsis thaliana harbors a domain with adenylyl cyclase activity. Am. J. Plant Sci. 13, 943–959 (2022).

    Article  CAS  Google Scholar 

  71. Chatukuta, P. et al. An Arabidopsis clathrin assembly protein with a predicted role in plant defense can function as an adenylate cyclase. Biomolecules 8, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bianchet, C. et al. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. J. Plant Physiol. 232, 12–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Al-Younis, I. et al. Functional crypto-adenylate cyclases operate in complex plant proteins. Front. Plant Sci. 12, 711749 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Świeżawska, B. et al. Brachypodium distachyon triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding. FEBS Lett. 594, 1101–1111 (2020).

    Article  PubMed  Google Scholar 

  75. Yuan, Y. et al. Two triphosphate tunnel metalloenzymes from apple exhibit adenylyl cyclase activity. Front. Plant Sci. 13, 992488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Swieżawska, B. et al. Molecular cloning and characterization of a novel adenylyl cyclase gene, HpAC1, involved in stress signaling in Hippeastrum x hybridum. Plant Physiol. Biochem. 80, 41–52 (2014).

    Article  PubMed  Google Scholar 

  77. Yang, H. et al. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. J. Exp. Bot. 72, 283–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Kwiatkowski, M., Wong, A., Bi, C., Gehring, C. & Jaworski, K. Twin cyclic mononucleotide cyclase and phosphodiesterase domain architecture as a common feature in complex plant proteins. Plant Sci. 325, 111493 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Ito, M. et al. Novel type of adenylyl cyclase participates in tabtoxinine-β-lactam-induced cell death and occurrence of wildfire disease in Nicotiana benthamiana. Plant Signal. Behav. 9, e27420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bobo, E. D. et al. Identification and characterization of a soybean protein with adenylyl cyclase activity. Commun. Plant Sci. 12, 050–059 (2022).

    Google Scholar 

  81. Liu, Z. et al. Three novel adenylate cyclase genes show significant biological functions in plant. J. Agric. Food Chem. 71, 1149–1161 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Hope, B. T., Nagarkar, D., Leonard, S. & Wise, R. A. Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. J. Neurosci. 27, 1964–1972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kasahara, M. et al. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci. Rep. 6, 39232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hasan, A. et al. Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells. Biochem. Biophys. Res. Commun. 448, 236–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Beste, K. Y., Burhenne, H., Kaever, V., Stasch, J. P. & Seifert, R. Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1. Biochemistry 51, 194–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carricarte, V. C. et al. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa). Biochem. J. 249, 807–811 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lusini, P., Trabalzini, L., Franchi, G. G., Bovalinia, L. & Martelli, P. Adenylate cyclase in roots of Ricinus communis; stimulation by GTP and Mn2+. Phytochemistry 30, 109–111 (1991).

    Article  CAS  Google Scholar 

  89. Su, B., Qian, Z., Li, T., Zhou, Y. & Wong, A. PlantMP: a database for moonlighting plant proteins. Database 2019, baz050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 1447–1478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moeder, W. et al. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development. Plant J. 76, 615–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Ung, H., Moeder, W. & Yoshioka, K. Arabidopsis triphosphate tunnel metalloenzyme2 is a negative regulator of the salicylic acid-mediated feedback amplification loop for defense responses. Plant Physiol. 166, 1009–1021 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ung, H. et al. Triphosphate tunnel metalloenzyme function in senescence highlights a biological diversification of this protein superfamily. Plant Physiol. 175, 473–485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kwiatkowski, M., Wong, A., Kozakiewicz, A., Gehring, C. & Jaworski, K. A tandem motif-based and structural approach can identify hidden functional phosphodiesterases. Comput. Struct. Biotechnol. J. 19, 970–975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mattei, B., Spinelli, F., Pontiggia, D. & De Lorenzo, G. Comprehensive analysis of the membrane phosphoproteome regulated by oligogalacturonides in Arabidopsis thaliana. Front. Plant Sci. 7, 1107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Groth, M. et al. MTHFD1 controls DNA methylation in Arabidopsis. Nat. Commun. 7, 11640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kloor, D. & Osswald, H. S-adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol. Sci. 25, 294–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Barkan, A. & Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Feng, Y., Hiwatashi, T., Minamino, N., Ebine, K. & Ueda, T. Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. FEBS Lett. 596, 2256–2268 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Uchida, N. et al. Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nat. Chem. Biol. 14, 299–305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, N., Fu, D., Li, S., Wang, Y. & Wong, A. GCPred: a web tool for guanylyl cyclase functional centre prediction from amino acid sequence. Bioinformatics 34, 2134–2135 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Turek, I. & Irving, H. Moonlighting proteins shine new light on molecular signaling niches. Int. J. Mol. Sci. 22, 1367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rich-Griffin, C. et al. Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci. 25, 186–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Seyfferth, C. et al. Advances and opportunities in single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 72, 847–866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wong, A., Bi, C., Chi, W., Hu, N. & Gehring, C. Amino acid motifs for the identification of novel protein interactants. Comput. Struct. Biotechnol. J. 21, 326–334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Van Damme, T. et al. Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103, 59–66 (2014).

    Article  PubMed  Google Scholar 

  109. Chodasiewicz, M. et al. 2′,3′-cAMP treatment mimics the stress molecular response in Arabidopsis thaliana. Plant Physiol. 188, 1966–1978 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge technical and logistical support provided by the Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics and the Zhejiang Bioinformatics International Science and Technology Cooperation Center. This research was supported by grants from the National Natural Science Foundation of China (32100581) and the International Collaborative Research Program of Wenzhou-Kean University (ICRP202202) awarded to A.W.

Author information

Authors and Affiliations

Authors

Contributions

A.W. and C.G. conceived the idea, analysed the data and wrote the paper. W.C., and J.Y. analysed the data and generated the supplementary table. Y.Y. analysed the data and wrote the paper. C.B. and X.T. analysed the data and generated the figures.

Corresponding authors

Correspondence to Aloysius Wong or Chris Gehring.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Lo Lomovatskaya, Ruqiang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A., Chi, W., Yu, J. et al. Plant adenylate cyclases have come full circle. Nat. Plants 9, 1389–1397 (2023). https://doi.org/10.1038/s41477-023-01486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01486-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing