Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Why is FERONIA pleiotropic?

Abstract

The plant cell wall has many roles: structure, hydraulics, signalling and immunity. Monitoring its status is therefore essential for plant life. Among many candidate cell wall sensors, FERONIA, a member of the Catharanthus roseus receptor-like kinase-1-like kinase (CrRLK1L) family, has received considerable attention, notably because of its numerous interactors and its implication in many biological pathways. Conversely, such an analytical dissection may blur its core function. Here we revisit the array of feronia phenotypes as an attempt to identify a unifying feature behind the plethora of biological and biochemical functions. We propose that the contribution of FERONIA in monitoring turgor-dependent cell wall tension may explain its pleiotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FER, a Swiss Army knife.
Fig. 2: FER is involved in a multitude of signalling pathways.
Fig. 3: FER is responsible for cell mechanical integrity.
Fig. 4: The mechanics and hydraulics behind FER pleiotropy.

Similar content being viewed by others

References

  1. Wolf, S. Cell wall signaling in plant development and defense. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-102820-095312 (2022).

  2. Ortiz-Morea, F. A., Liu, J., Shan, L. & He, P. Malectin-like receptor kinases as protector deities in plant immunity. Nat. Plants 8, 27–37 (2021).

    PubMed  PubMed Central  Google Scholar 

  3. Escobar-Restrepo, J.-M. et al. The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317, 656–660 (2007).

  4. Duan, Q., Kita, D., Li, C., Cheung, A. Y. & Wu, H.-M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl Acad. Sci. USA 107, 17821–17826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, H. et al. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 106, 7648–7653 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Duan, Q. et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129 (2014).

    PubMed  Google Scholar 

  7. Huck, N., Moore, J. M., Federer, M. & Grossniklaus, U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149–2159 (2003).

    CAS  PubMed  Google Scholar 

  8. Yeats, T. H., Sorek, H., Wemmer, D. E. & Somerville, C. R. Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol. 171, 110–124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Malivert, A. et al. FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol. 19, e3001454 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, C. et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Lin, W. et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. https://doi.org/10.1016/j.cub.2021.11.030 (2021).

  12. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, Q., Zhang, Z., Liu, Y., Tao, L.-Z. & Liu, H. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett. 593, 97–106 (2019).

    CAS  PubMed  Google Scholar 

  14. Keinath, N. F. et al. PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285, 39140–39149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stegmann, M. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287–289 (2017).

    CAS  PubMed  Google Scholar 

  16. Zhang, X., Yang, Z., Wu, D. & Yu, F. RALF–FERONIA signaling: linking plant immune response with cell growth. Plant Commun. 1, 100084 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Tang, J. et al. Plant immunity suppression via PHR1–RALF–FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO J. 41, e109102 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gronnier, J. et al. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife 11, e74162 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kessler, S. A. et al. Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968–971 (2010).

    CAS  PubMed  Google Scholar 

  20. Masachis, S. et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1, 16043 (2016).

    CAS  PubMed  Google Scholar 

  21. Huang, Y.-Y. et al. Identification of FERONIA-like receptor genes involved in rice–Magnaporthe oryzae interaction. Phytopathol. Res. 2, 14 (2020).

    Google Scholar 

  22. Chen, J. et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc. Natl Acad. Sci. USA 113, E5519–E5527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng, W. et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666–675.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Richter, J., Ploderer, M., Mongelard, G., Gutierrez, L. & Hauser, M.-T. Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front Plant Sci. 8, 1554 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Wang, L. et al. Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biol. 20, 26 (2020).

    PubMed  PubMed Central  Google Scholar 

  26. Yu, F. et al. FERONIA receptor kinase controls seed size in Arabidopsis thaliana. Mol. Plant 7, 920–922 (2014).

    CAS  PubMed  Google Scholar 

  27. Yang, T. et al. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun. 465, 77–82 (2015).

    CAS  PubMed  Google Scholar 

  28. Du, S., Qu, L.-J. & Xiao, J. Crystal structures of the extracellular domains of the CrRLK1L receptor-like kinases ANXUR1 and ANXUR2. Protein Sci. 27, 886–892 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moussu, S., Augustin, S., Roman, A. O., Broyart, C. & Santiago, J. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr. D Struct. Biol. 74, 671–680 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dünser, K. et al. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 38, e100353 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Xiao, Y. et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270–274 (2019).

    CAS  PubMed  Google Scholar 

  32. Deslauriers, S. D. & Larsen, P. B. FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol. Plant 3, 626–640 (2010).

    CAS  PubMed  Google Scholar 

  33. Xie, Y. et al. FERONIA receptor kinase integrates with hormone signaling to regulate plant growth, development, and responses to environmental stimuli. Int. J. Mol. Sci. 23, 3730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, C. et al. The LRXs–RALFs–FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci. Rev. 8, nwaa149 (2021).

    CAS  PubMed  Google Scholar 

  35. Wang, G., Zhao, Z., Zheng, X., Shan, W. & Fan, J. How a single receptor-like kinase exerts diverse roles: lessons from FERONIA. Mol. Hortic. 2, 25 (2022).

    CAS  Google Scholar 

  36. Verger, S., Long, Y., Boudaoud, A. & Hamant, O. A tension–adhesion feedback loop in plant epidermis. eLife 7, e34460 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Gigli-Bisceglia, N., van Zelm, E., Huo, W., Lamers, J. & Testerink, C. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing. Development 149, dev200363 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Borowska-Wykręt, D., Elsner, J., De Veylder, L. & Kwiatkowska, D. Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem. Protoplasma 250, 955–961 (2013).

    PubMed  Google Scholar 

  39. Gu, Y. et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl Acad. Sci. USA 107, 12866–12871 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature https://doi.org/10.1038/s41586-020-2106-2 (2020).

  41. Shih, H.-W., Miller, N. D., Dai, C., Spalding, E. P. & Monshausen, G. B. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24, 1887–1892 (2014).

    CAS  PubMed  Google Scholar 

  42. Beauzamy, L., Nakayama, N. & Boudaoud, A. Flowers under pressure: ins and outs of turgor regulation in development. Ann. Bot. 114, 1517–1533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, W. et al. Mechano-transduction via the pectin–FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. https://doi.org/10.1016/j.cub.2021.11.031 (2021).

  44. Bellati, J. et al. Novel aquaporin regulatory mechanisms revealed by interactomics. Mol. Cell. Proteom. 15, 3473–3487 (2016).

    CAS  Google Scholar 

  45. Kapilan, R., Vaziri, M. & Zwiazek, J. J. Regulation of aquaporins in plants under stress. Biol. Res. 51, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Rodrigues, O. et al. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc. Natl Acad. Sci. USA 114, 9200–9205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, G. et al. FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. J. Exp. Bot. 70, 6375–6388 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prado, K. et al. Oscillating aquaporin phosphorylation and 14-3-3 proteins mediate the circadian regulation of leaf hydraulics. Plant Cell 31, 417–429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    CAS  PubMed  Google Scholar 

  50. Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003–1007 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sapala, A. et al. Why plants make puzzle cells, and how their shape emerges. eLife 7, e32794 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Ferrari, S. et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4, 49 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, C. et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 13123–13128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamilton, E. S. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350, 438–441 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guichard, M., Thomine, S. & Frachisse, J.-M. Mechanotransduction in the spotlight of mechano-sensitive channels. Curr. Opin. Plant Biol. 68, 102252 (2022).

    CAS  PubMed  Google Scholar 

  56. Yuan, F. et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014).

    CAS  PubMed  Google Scholar 

  57. Radin, I. et al. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586–590 (2021).

    CAS  PubMed  Google Scholar 

  58. Mielke, S. et al. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Sci. Adv. 7, eabf0356 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Popko, J., Hänsch, R., Mendel, R.-R., Polle, A. & Teichmann, T. The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol. 12, 242–258 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M. wrote the initial draft of the manuscript. A.M. and O.H. revised and wrote the manuscript.

Corresponding author

Correspondence to Olivier Hamant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks José Dinneny, Sebastian Wolf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malivert, A., Hamant, O. Why is FERONIA pleiotropic?. Nat. Plants 9, 1018–1025 (2023). https://doi.org/10.1038/s41477-023-01434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01434-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing