Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple mechanisms behind plant bending

Abstract

To survive, plants constantly adapt their body shape to their environment. This often involves remarkably rapid bending of their organs such as stems, leaves and roots. Since plant cells are enclosed by stiff cell walls, they use various strategies for bending their organs, which differ from bending mechanisms of soft animal tissues and involve larger physical forces. Here we attempt to summarize and link different viewpoints on bending mechanisms: genes and signalling, mathematical modelling and biomechanics. We argue that quantifying cell growth and physical forces could open a new level in our understanding of bending and resolve some of its paradoxes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Hinge-like vs fountain-like bending strategies of plants.
Fig. 2: Networks for growth control during bending.
Fig. 3: Thin-rod models of gravitropism vs mechanical models of reaction wood.
Fig. 4: Patterns of tension-compression differ depending on what causes bending.

References

  1. Yamamoto, C., Sakata, Y., Taji, T., Baba, T. & Tanaka, S. Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness. J. Plant Res. 121, 509–519 (2008).

    Article  CAS  Google Scholar 

  2. Rafsanjani, A., Brulé, V., Western, T. L. & Pasini, D. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5, 8064 (2015).

    Article  CAS  Google Scholar 

  3. Dietrich, D. Hydrotropism: how roots search for water. J. Exp. Bot. 69, 2759–2771 (2018).

    Article  CAS  Google Scholar 

  4. La Porta, C. A. M. et al. Metamaterial architecture from a self-shaping carnivorous plant. Proc. Natl Acad. Sci. USA 116, 18777–18782 (2019).

    Article  Google Scholar 

  5. Philosoph-Hadas, S., Friedman, H. & Meir, S. Gravitropic bending and plant hormones. Vitam. Horm. 72, 31–78 (2005).

    Article  CAS  Google Scholar 

  6. Whippo, C. W. & Hangarter, R. P. Phototropism: bending towards enlightenment. Plant Cell 18, 1110–1119 (2006).

    Article  CAS  Google Scholar 

  7. Kiss, J. Z. Up, down, and all around: how plants sense and respond to environmental stimuli. Proc. Natl Acad. Sci. USA 103, 829–830 (2006).

    Article  CAS  Google Scholar 

  8. Silk, W. K. Quantitative descriptions of development. Annu. Rev. Plant Physiol. 35, 479–518 (1984).

    Article  Google Scholar 

  9. Rauf, M. et al. NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25, 4941–4955 (2013).

    Article  CAS  Google Scholar 

  10. Baral, A. et al. External mechanical cues reveal a katanin-independent mechanism behind auxin-mediated tissue bending in plants. Dev. Cell 56, 67–80.e3 (2021).

    Article  CAS  Google Scholar 

  11. Peng, Y. et al. Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis. J. Integr. Plant Biol. 64, 5–22 (2022).

    Article  CAS  Google Scholar 

  12. Liscum, E. & Hangarter, R. P. Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings. Plant Physiol. 101, 567–572 (1993).

    Article  Google Scholar 

  13. Silk, W. K. & Erickson, R. O. Kinematics of hypocotyl curvature. Am. J. Bot. 65, 310–319 (1978).

    Article  Google Scholar 

  14. Spalding, E. P. Diverting the downhill flow of auxin to steer growth during tropisms. Am. J. Bot. 100, 203–214 (2013).

    Article  CAS  Google Scholar 

  15. Barbez, E., Dünser, K., Gaidora, A., Lendl, T. & Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, E4884–E4893 (2017).

    Article  CAS  Google Scholar 

  16. Fu, X. & Harberd, N. P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003).

    Article  CAS  Google Scholar 

  17. Zádníková, P. et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137, 607–617 (2010).

    Article  Google Scholar 

  18. Barbosa, I. C. R., Zourelidou, M., Willige, B. C., Weller, B. & Schwechheimer, C. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev. Cell 29, 674–685 (2014).

    Article  CAS  Google Scholar 

  19. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    Article  CAS  Google Scholar 

  20. Zhu, Q. et al. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development 146, dev175919 (2019).

    Article  CAS  Google Scholar 

  21. Mazzella, M. A., Casal, J. J., Muschietti, J. P. & Fox, A. R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 5, 52 (2014).

    Article  Google Scholar 

  22. Aryal, B. et al. Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr. Biol. 30, 1733–1739.e3 (2020).

    Article  CAS  Google Scholar 

  23. Jonsson, K. et al. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr. Biol. 31, 1154–1164.e3 (2021).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    Article  CAS  Google Scholar 

  25. Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLOS ONE 8, e57813 (2013).

    Article  CAS  Google Scholar 

  26. Feraru, E. et al. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21, 338–343 (2011).

    Article  CAS  Google Scholar 

  27. Bastien, R., Bohr, T., Moulia, B. & Douady, S. Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proc. Natl Acad. Sci. USA 110, 755–760 (2013).

    Article  CAS  Google Scholar 

  28. Chelakkot, R. & Mahadevan, L. On the growth and form of shoots. J. R. Soc. Interface 14, 20170001 (2017).

    Article  Google Scholar 

  29. Chauvet, H., Moulia, B., Legué, V., Forterre, Y. & Pouliquen, O. Revealing the hierarchy of processes and time-scales that control the tropic response of shoots to gravi-stimulations. J. Exp. Bot. 70, 1955–1967 (2019).

    Article  CAS  Google Scholar 

  30. Meroz, Y., Bastien, R. & Mahadevan, L. Spatio-temporal integration in plant tropisms. J. R. Soc. Interface 16, 20190038 (2019).

    Article  CAS  Google Scholar 

  31. Agostinelli, D., Lucantonio, A., Noselli, G. & DeSimone, A. Nutations in growing plant shoots: the role of elastic deformations due to gravity loading. J. Mech. Phys. Solids 136, 103702 (2020).

    Article  Google Scholar 

  32. Bastien, R. & Meroz, Y. The kinematics of plant nutation reveals a simple relation between curvature and the orientation of differential growth. PLoS Comput. Biol. 12, e1005238 (2016).

    Article  Google Scholar 

  33. Levernier, N., Pouliquen, O. & Forterre, Y. An integrative model of plant gravitropism linking statoliths position and auxin transport. Front. Plant Sci. 12, 474 (2021).

    Article  Google Scholar 

  34. Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987–1998 (2014).

    Article  CAS  Google Scholar 

  35. Hay, J. O., Moulia, B., Lane, B., Freeling, M. & Silk, W. K. Biomechanical analysis of the Rolled (RLD) leaf phenotype of maize. Am. J. Bot. 87, 625–633 (2000).

    Article  CAS  Google Scholar 

  36. Meroz, Y. & Silk, W. K. By hook or by crook: how and why do compound leaves stay curved during development? J. Exp. Bot. 71, 6189–6192 (2020).

    Article  CAS  Google Scholar 

  37. Bowling, A. J. & Vaughn, K. C. Gelatinous fibers are widespread in coiling tendrils and twining vines. Am. J. Bot. 96, 719–727 (2009).

    Article  Google Scholar 

  38. Pütz, N. in Plant Roots (eds Waisel, Y, Eshel, A, Beeckman, T & Kafkafi, U.) Ch. 54 (CRC Press, 2002).

  39. Gerbode, S. J., Puzey, J. R., McCormick, A. G. & Mahadevan, L. How the cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012).

    Article  CAS  Google Scholar 

  40. Hofhuis, H. et al. Morphomechanical innovation drives explosive seed dispersal. Cell 166, 222–233 (2016).

    Article  CAS  Google Scholar 

  41. Rivière, M., Corre, Y., Peaucelle, A., Derr, J. & Douady, S. The hook shape of growing leaves results from an active regulatory process. J. Exp. Bot. 71, 6408–6417 (2020).

    Article  Google Scholar 

  42. Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

    Article  CAS  Google Scholar 

  43. Hejnowicz, Z., Rusin, A. & Rusin, T. Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J. Plant Growth Regul. 19, 31–44 (2000).

    Article  CAS  Google Scholar 

  44. Baskin, T. I. & Jensen, O. E. On the role of stress anisotropy in the growth of stems. J. Exp. Bot. 64, 4697–4707 (2013).

    Article  CAS  Google Scholar 

  45. Moulton, D. E., Oliveri, H. & Goriely, A. Multiscale integration of environmental stimuli in plant tropism produces complex behaviors. Proc. Natl Acad. Sci. USA 117, 32226–32237 (2020).

    Article  CAS  Google Scholar 

  46. Fourcaud, T., Blaise, F., Lac, P., Castéra, P. & de Reffye, P. Numerical modelling of shape regulation and growth stresses in trees. Trees 17, 31–39 (2003).

    Article  Google Scholar 

  47. Alméras, T., Thibaut, A. & Gril, J. Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19, 457–467 (2005).

    Article  Google Scholar 

  48. Gril, J., Jullien, D., Bardet, S. & Yamamoto, H. Tree growth stress and related problems. J. Wood Sci. 63, 411–432 (2017).

    Article  CAS  Google Scholar 

  49. Kennaway, R., Coen, E., Green, A. & Bangham, A. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput. Biol. 7, e1002071 (2011).

    Article  CAS  Google Scholar 

  50. Rebocho, A. B., Southam, P., Kennaway, J. R., Bangham, J. A. & Coen, E. Generation of shape complexity through tissue conflict resolution. eLife 6, e20156 (2017).

    Article  Google Scholar 

  51. Hématy, K. et al. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17, 922–931 (2007).

    Article  Google Scholar 

  52. Feng, W. et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666–675.e5 (2018).

    Article  CAS  Google Scholar 

  53. Shih, H.-W., Miller, N. D., Dai, C., Spalding, E. P. & Monshausen, G. B. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24, 1887–1892 (2014).

    Article  CAS  Google Scholar 

  54. Ishikawa, H. & Evans, M. L. The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol. 102, 1203–1210 (1993).

    Article  CAS  Google Scholar 

  55. Zhang, N. & Hasenstein, K. H. Distribution of expansins in graviresponding maize roots. Plant Cell Physiol. 41, 1305–1312 (2000).

    Article  CAS  Google Scholar 

  56. Fendrych, M., Leung, J. & Friml, J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048 (2016).

    Article  Google Scholar 

  57. Ikushima, T., Soga, K., Hoson, T. & Shimmen, T. Role of xyloglucan in gravitropic bending of azuki bean epicotyl. Physiol. Plant. 132, 552–565 (2008).

    Article  CAS  Google Scholar 

  58. Velasquez, S. M. et al. Xyloglucan remodeling defines auxin-dependent differential tissue expansion in plants. Int. J. Mol. Sci. 22, 9222 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work is not cited due to space limitations. This research was supported by an International Post-doc grant from Vetenskapsrådet (2020-06442) to K.J., a Marie Curie Individual Fellowship grant to Y.M., grants from FRQNT (2021-NC-284190) and NSERC (RGPIN-2018-05762) to A.-L.R.-K., and grants from the Kempe Foundation and Vetenskapsrådet (2016-00504) to R.P.B.

Author information

Authors and Affiliations

Authors

Contributions

K.J., Y.M., A.-L.R.-K. and R.P.B. wrote the manuscript. K.J. and A.-L.R.-K. generated the figures.

Corresponding authors

Correspondence to Anne-Lise Routier-Kierzkowska or Rishikesh P. Bhalerao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ali Ferjani, Arun Sampathkumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jonsson, K., Ma, Y., Routier-Kierzkowska, AL. et al. Multiple mechanisms behind plant bending. Nat. Plants 9, 13–21 (2023). https://doi.org/10.1038/s41477-022-01310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01310-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing