Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recent advances in crop transformation technologies

Abstract

Agriculture is experiencing a technological inflection point in its history, while also facing unprecedented challenges posed by human population growth and global climate changes. Key advancements in precise genome editing and new methods for rapid generation of bioengineered crops promise to both revolutionize the speed and breadth of breeding programmes and increase our ability to feed and sustain human population growth. Although genome editing enables targeted and specific modifications of DNA sequences, several existing barriers prevent the widespread adoption of editing technologies for basic and applied research in established and emerging crop species. Inefficient methods for the transformation and regeneration of recalcitrant species and the genotype dependency of the transformation process remain major hurdles. These limitations are frequent in monocotyledonous crops, which alone provide most of the calories consumed by human populations. Somatic embryogenesis and de novo induction of meristems — pluripotent groups of stem cells responsible for plant developmental plasticity — are essential strategies to quickly generate transformed plants. Here we review recent discoveries that are rapidly advancing nuclear transformation technologies and promise to overcome the obstacles that have so far impeded the widespread adoption of genome editing in crop species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plant transformation and regeneration strategies.
Fig. 2: Plant regeneration pathways.

Similar content being viewed by others

References

  1. Phillips, R. L., Kaeppler, S. M. & Olhoft, P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl Acad. Sci. USA 91, 5222–5226 (1994).

    Article  CAS  Google Scholar 

  2. Neelakandan, A. K. & Wang, K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep. 31, 597–620 (2012).

    Article  CAS  Google Scholar 

  3. Gordon-Kamm, B. et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel) 8, 38 (2019).

    Article  CAS  Google Scholar 

  4. Anami, S., Njuguna, E., Coussens, G., Aesaert, S. & Van Lijsebettens, M. Higher plant transformation: principles and molecular tools. Int. J. Dev. Biol. 57, 483–494 (2013).

    Article  CAS  Google Scholar 

  5. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

    Article  CAS  Google Scholar 

  6. Clark, K. A. & Krysan, P. J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J. 64, 990–1001 (2010).

    Article  CAS  Google Scholar 

  7. Hu, Y., Chen, Z., Zhuang, C. & Huang, J. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration. Plant J. 90, 954–965 (2017).

    Article  CAS  Google Scholar 

  8. Krispil, R. et al. The position and complex genomic architecture of plant T-DNA insertions revealed by 4SEE. Int. J. Mol. Sci. 21, 2373 (2020).

    Article  CAS  Google Scholar 

  9. Pucker, B., Kleinbolting, N. & Weisshaar, B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis. BMC Genomics 22, 599 (2021).

    Article  CAS  Google Scholar 

  10. Jupe, F. et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 15, e1007819 (2019).

    Article  Google Scholar 

  11. Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    Article  CAS  Google Scholar 

  12. Liang, Z. et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413–430 (2018).

    Article  CAS  Google Scholar 

  13. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    Article  CAS  Google Scholar 

  14. Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    Article  CAS  Google Scholar 

  15. Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl Acad. Sci. USA 93, 9975–9979 (1996).

    Article  CAS  Google Scholar 

  16. De Saeger, J. et al. Agrobacterium strains and strain improvement: present and outlook. Biotechnol. Adv. 53, 107677 (2021).

    Article  Google Scholar 

  17. Lacroix, B. & Citovsky, V. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu Rev. Phytopathol. 57, 231–251 (2019).

    Article  CAS  Google Scholar 

  18. Yuan, Z. C. et al. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc. Natl Acad. Sci. USA 104, 11790–11795 (2007).

    Article  CAS  Google Scholar 

  19. Lee, C. W. et al. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948–2962 (2009).

    Article  CAS  Google Scholar 

  20. Zhang, Q. et al. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol. 181, 1441–1448 (2019).

    Article  CAS  Google Scholar 

  21. Anand, A. et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol. Biol. 97, 187–200 (2018).

    Article  CAS  Google Scholar 

  22. Kang, M. et al. An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos. Front Plant Sci. 13, 860971 (2022).

    Article  Google Scholar 

  23. Raman, V. et al. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat. Commun. 13, 2581 (2022).

    Article  CAS  Google Scholar 

  24. Lv, Z., Jiang, R., Chen, J. & Chen, W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J. 104, 880–891 (2020).

    Article  CAS  Google Scholar 

  25. Vejlupkova, Z. et al. No evidence for transient transformation via pollen magnetofection in several monocot species. Nat. Plants 6, 1323–1324 (2020).

    Article  Google Scholar 

  26. Zhao, X. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 3, 956–964 (2017).

    Article  CAS  Google Scholar 

  27. Wang, Z. P. et al. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J. Integr. Plant Biol. 64, 1145–1156 (2022).

    Article  CAS  Google Scholar 

  28. Ma, X., Zhang, X., Liu, H. & Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 6, 773–779 (2020).

    Article  CAS  Google Scholar 

  29. Hu, J. et al. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol. Plant Pathol. 20, 1463–1474 (2019).

    Article  CAS  Google Scholar 

  30. Li, T. et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant 14, 1787–1798 (2021).

    Article  CAS  Google Scholar 

  31. Williams, L. E. Genetics of shoot meristem and shoot regeneration. Annu. Rev. Genet. 55, 661–681 (2021).

    Article  Google Scholar 

  32. Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406 (2019).

    Article  CAS  Google Scholar 

  33. Motte, H., Vereecke, D., Geelen, D. & Werbrouck, S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32, 107–121 (2014).

    Article  CAS  Google Scholar 

  34. Efroni, I. et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721–1733 (2016).

    Article  CAS  Google Scholar 

  35. Verma, S., Attuluri, V. P. S. & Robert, H. S. An essential function for auxin in embryo development. Cold Spring Harb. Perspect. Biol. 13, a039966 (2021).

    Article  CAS  Google Scholar 

  36. Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).

    Article  CAS  Google Scholar 

  37. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    Article  CAS  Google Scholar 

  38. Lardon, R., Wijnker, E., Keurentjes, J. & Geelen, D. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun. Biol. 3, 549 (2020).

    Article  CAS  Google Scholar 

  39. Lin, G. et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol. 22, 175 (2021).

    Article  CAS  Google Scholar 

  40. Wang, F. X. et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54, 742–757e748 (2020).

    Article  CAS  Google Scholar 

  41. Li, M. et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 188, 1095–1110 (2022).

    Article  CAS  Google Scholar 

  42. Uc-Chuc, M. A. et al. YUCCA-mediated biosynthesis of the auxin IAA is required during the somatic embryogenic induction process in Coffea canephora. Int. J. Mol. Sci. 21, 4751 (2020).

    Article  CAS  Google Scholar 

  43. Wang, Y. et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. Plant J. 109, 980–991 (2021).

    Article  Google Scholar 

  44. Wojcikowska, B. et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238, 425–440 (2013).

    Article  CAS  Google Scholar 

  45. Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

    Article  CAS  Google Scholar 

  46. Zhang, T. Q. et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29, 1073–1087 (2017).

    Article  CAS  Google Scholar 

  47. Wu, L. Y. et al. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 57, 526–542e527 (2022).

    Article  CAS  Google Scholar 

  48. Matsuo, N., Makino, M. & Banno, H. Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci. 181, 39–46 (2011).

    Article  CAS  Google Scholar 

  49. Iwase, A. et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29, 54–69 (2017).

    Article  CAS  Google Scholar 

  50. Heyman, J. et al. The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nat. Plants 2, 16165 (2016).

    Article  CAS  Google Scholar 

  51. Ikeuchi, M. et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 175, 1158–1174 (2017).

    Article  CAS  Google Scholar 

  52. Sakamoto, Y. et al. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. Plant Cell 34, 4348–4365 (2022).

    Article  Google Scholar 

  53. Hofhuis, H. et al. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr. Biol. 23, 956–962 (2013).

    Article  CAS  Google Scholar 

  54. Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 1017–1030 (2015).

    Article  CAS  Google Scholar 

  55. Lian, Z. et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol. J. 20, 1622–1635 (2022).

    Article  CAS  Google Scholar 

  56. Hernandez-Coronado, M. et al. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev. Cell 57, 451–465.e6 (2022).

    Article  CAS  Google Scholar 

  57. Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749 (2002).

    Article  CAS  Google Scholar 

  58. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  CAS  Google Scholar 

  59. Lowe, K. et al. Morphogenic regulators BABY BOOM and WUSCHEL improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    Article  CAS  Google Scholar 

  60. Khanday, I., Santos-Medellin, C. & Sundaresan, V. Rice embryogenic trigger BABY BOOM1 promotes somatic embryogenesis by upregulation of auxin biosynthesis genes. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.265025 (2020).

  61. Horstman, A. et al. The BABY BOOM transcription factor activates the LEC1–ABI3–FUS3–LEC2 network to induce somatic embryogenesis. Plant Physiol. 175, 848–857 (2017).

    Article  CAS  Google Scholar 

  62. Underwood, C. J. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93 (2022).

    Article  CAS  Google Scholar 

  63. Maren, N. A. et al. Genotype-independent plant transformation. Hortic. Res. 9, uhac047 (2022).

    Article  Google Scholar 

  64. Salaun, C., Lepiniec, L. & Dubreucq, B. Genetic and molecular control of somatic embryogenesis. Plants (Basel) 10, 1467 (2021).

    Article  CAS  Google Scholar 

  65. Kausch, A. P. et al. Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci. 281, 186–205 (2019).

    Article  CAS  Google Scholar 

  66. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    Article  CAS  Google Scholar 

  67. Lowe, K. et al. Rapid genotype ‘independent’ Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitr. Cell. Dev. Biol. Plant 54, 240–252 (2018).

    Article  CAS  Google Scholar 

  68. Hoerster, G. et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitr. Cell. Dev. Biol. Plant 56, 265–279 (2020).

    Article  CAS  Google Scholar 

  69. Pan, C. et al. Boosting plant genome editing with a versatile CRISPR–Combo system. Nat. Plants 8, 513–525 (2022).

    Article  CAS  Google Scholar 

  70. Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110–117 (2022).

    Article  Google Scholar 

  71. Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).

    Article  CAS  Google Scholar 

  72. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  Google Scholar 

  73. Ortiz-Ramirez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).

    Article  CAS  Google Scholar 

  74. Forzani, C. et al. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr. Biol. 24, 1939–1944 (2014).

    Article  CAS  Google Scholar 

  75. Pi, L. et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33, 576–588 (2015).

    Article  CAS  Google Scholar 

  76. Zhai, N. & Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 1453–1460 (2021).

    Article  CAS  Google Scholar 

  77. Wang, K. et al. Author correction: the gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 717–720 (2022).

    Article  Google Scholar 

  78. Li, S. et al. The OsmiR396c–OsGRF4–OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14, 2134–2146 (2016).

    Article  CAS  Google Scholar 

  79. Rodriguez, R. E. et al. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27, 3354–3366 (2015).

    Article  CAS  Google Scholar 

  80. Liebsch, D. & Palatnik, J. F. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr. Opin. Plant Biol. 53, 31–42 (2020).

    Article  CAS  Google Scholar 

  81. Debernardi, J. M. et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J. 79, 413–426 (2014).

    Article  CAS  Google Scholar 

  82. Luo, G. & Palmgren, M. GRF–GIF chimeras boost plant regeneration. Trends Plant Sci. 26, 201–204 (2021).

    Article  CAS  Google Scholar 

  83. Zhang, X. et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in hemp (Cannabis sativa L.). Plant Biotechnol. J. 19, 1979–1987 (2021).

    Article  CAS  Google Scholar 

  84. Kong, J. et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Front. Plant Sci. 11, 572319 (2020).

    Article  Google Scholar 

  85. Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 15196 (2015).

    Article  Google Scholar 

  86. Aesaert, S. et al. Optimized transformation and gene editing of the B104 public maize inbred by improved tissue culture and use of morphogenic regulators. Front. Plant Sci. 13, 883847 (2022).

    Article  Google Scholar 

  87. Masters, A. et al. Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. J. Vis. Exp. https://doi.org/10.3791/60782 (2020).

  88. Mookkan, M., Nelson-Vasilchik, K., Hague, J., Zhang, Z. J. & Kausch, A. P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep. 36, 1477–1491 (2017).

    Article  CAS  Google Scholar 

  89. Chen, Z., Debernardi, J. M., Dubcovsky, J. & Gallavotti, A. The combination of morphogenic regulators BABY BOOM and GRF–GIF improves maize transformation efficiency. Preprint at bioRxiv https://doi.org/10.1101/2022.09.02.506370 (2022).

  90. Reed, K. M. & Bargmann, B. O. R. Protoplast regeneration and its use in new plant breeding technologies. Front. Genome Ed. 3, 734951 (2021).

    Article  Google Scholar 

  91. Cho, H. J. et al. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. Plant Biotechnol. J. 20, 977–990 (2022).

    Article  CAS  Google Scholar 

  92. Zobrist, J. D. et al. Transformation of teosinte (Zea mays ssp. parviglumis) via biolistic bombardment of seedling-derived callus tissues. Front. Plant Sci. 12, 773419 (2021).

    Article  Google Scholar 

  93. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  Google Scholar 

  94. Thakare, D., Tang, W., Hill, K. & Perry, S. E. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146, 1663–1672 (2008).

    Article  CAS  Google Scholar 

  95. Arroyo-Herrera, A. et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult. 94, 171–180 (2008).

    Article  Google Scholar 

  96. Che, P. et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 5, 344 (2022).

    Article  CAS  Google Scholar 

  97. Liu, Y. et al. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 genome-editing system to Brassica rapa var. rapa. Plant Methods 18, 98 (2022).

    Article  CAS  Google Scholar 

  98. Hu, W. et al. Kn1 gene overexpression drastically improves genetic transformation efficiencies of citrus cultivars. Plant Cell Tissue Organ Cult. 125, 81–91 (2016).

    Article  CAS  Google Scholar 

  99. Elhiti, M., Tahir, M., Gulden, R. H., Khamiss, K. & Stasolla, C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J. Exp. Bot. 61, 4069–4085 (2010).

    Article  CAS  Google Scholar 

  100. Heidmann, I., de Lange, B., Lambalk, J., Angenent, G. C. & Boutilier, K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 30, 1107–1115 (2011).

    Article  CAS  Google Scholar 

  101. Deng, W., Luo, K., Li, Z. & Yang, Y. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci. 177, 43–48 (2009).

    Article  CAS  Google Scholar 

  102. Zhou, Z. et al. Boosting transformation in wheat by BBM–WUS. Preprint at bioRxiv https://doi.org/10.1101/2022.03.13.483388 (2022).

  103. Feng, Q. et al. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4–GIF1 gene. J. Integr. Plant Biol. 63, 2038–2042 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the Gallavotti lab is supported by grants from the National Science Foundation (IOS nos 1546873, 1916804 and 2026561). Research in the Dubcovsky lab is supported by grants no. 2022-68013-36439 and no. 2022-67013-36209 from the USDA National Institute of Food and Agriculture and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.C., J.M.D., J.D. and A.G. conceived the manuscript, contributed to writing and editing, and approved the manuscript.

Corresponding author

Correspondence to Andrea Gallavotti.

Ethics declarations

Competing interests

J.M.D. is co-inventor in patent no. US2017/0362601A1, which describes the use of chimaeric GRF–GIF proteins with enhanced effects on plant growth (Universidad Nacional de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas). J.D. and J.M.D. are co-inventors in UC Davis patent application no. WO2021007284A2, which describes the use of GRF–GIF chimaeras to enhance regeneration efficiency in plants.

Peer review

Peer review information

Nature Plants thanks David Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Debernardi, J.M., Dubcovsky, J. et al. Recent advances in crop transformation technologies. Nat. Plants 8, 1343–1351 (2022). https://doi.org/10.1038/s41477-022-01295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01295-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research